On Entropy Dynamics for Active “Living” Particles
Abstract
:1. Introduction
2. On the Dynamics of Active Particles
- The dynamics of interactions involves test, candidate, and field active particles corresponding to the i-th functional subsystems (FSs), where the state of the particles is denoted respectively by , and , while the state of the FSs is delivered by the distribution functions, respectively, = ; ; and ;
- , and model the—positive defined—encounter rate of the interactions corresponding, respectively, to conservative, proliferative, and destructive encounters, where the subscripts correspond to the FSs of the interacting pairs;
- The terms , and model, respectively, the probability densities that: A candidate i-particle, with state , ends up into the state u of the same FS after the interaction with a field k-particle with state ; A candidate h-particle, with state , proliferates into the state u of the i-FS after the interaction with a field k-particle with state ; A test i-particle, with state , is destroyed within the same FS after the interaction with a field k-particle with state .
3. Models with Discrete Internal Variables and Entropy Dynamics
4. Research Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bellomo, N.; Degond, P.; Tadmor, E. Active Particles; Birkhäuser: New York, NY, USA, 2017; Volume 1. [Google Scholar]
- Gibelli, L.; Elaiw, A.; Alghamdi, M.-A.; Althiabi, A.-M. Heterogeneous population dynamics of active particles: Progression, mutations and selection dynamics. Math. Model. Methods Appl. Sci. 2017, 27, 617–640. [Google Scholar] [CrossRef]
- Bellomo, N.; Bellouquid, A.; Gibelli, L.; Outada, N. A Quest Towards a Mathematical Theory of Living Systems; Birkhäuser: New York, NY, USA, 2017. [Google Scholar]
- Burini, D.; De Lillo, S.; Gibelli, L. Stochastic differential “nonlinear” games modeling collective learning dynamics. Phys. Life Rev. 2016, 26, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Bellouquid, A.; De Angelis, E.; Knopoff, D. From the modeling of the immune hallmarks of cancer to a black swan in biology. Math. Model. Methods Appl. Sci. 2013, 23, 949–978. [Google Scholar] [CrossRef]
- Bellomo, N.; Bellouquid, A.; Nieto, J.; Soler, J. On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discret. Contin. Dyn. Syst. Ser. B 2014, 19, 1869–1888. [Google Scholar] [CrossRef]
- Bellouquid, A.; De Angelis, E.; Fermo, L. Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach. Math. Model. Methods Appl. Sci. 2012, 22, 1140003. [Google Scholar] [CrossRef]
- Burini, D.; De Lillo, S.; Fioriti, G. Influence of drivers ability in a discrete vehicular traffic model. Int. J. Mod. Phys. C 2017, 28, 1750030. [Google Scholar] [CrossRef]
- Bellomo, N.; Bellouquid, A. On multiscale models of pedestrian crowds from mesoscopic to macroscopic. Commun. Math. Sci. 2015, 13, 1649–1664. [Google Scholar] [CrossRef]
- Bellomo, N.; Bellouquid, A.; Knopoff, D. From the micro-scale to collective crowd dynamics. Soc. Ind. Appl. Math. 2013, 11, 943–963. [Google Scholar]
- Bellomo, N.; Gibelli, L. Toward a behavioral-social dynamics of pedestrian crowds. Math. Model. Methods Appl. Sci. 2015, 25, 2417–2437. [Google Scholar] [CrossRef]
- Bellomo, N.; Ha, S.Y. A quest toward a mathematical theory of the dynamics of swarms. Math. Model. Methods Appl. Sci. 2017, 27, 745–770. [Google Scholar] [CrossRef]
- Aristov, V.-V. Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows; Springer-Verlag: New York, NY, USA, 2001. [Google Scholar]
- Barbante, P.; Frezzotti, A.; Gibelli, L. A kinetic theory description of liquid menisci at the microscale. Kinet. Relat. Model. 2015, 8, 235–254. [Google Scholar] [Green Version]
- Bird, G.-A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Cercignani, C.; Illner, R.; Pulvirenti, M. The Mathematical Theory of Diluted Gas; Springer: Heidelberg, Germany; New York, NY, USA, 1993. [Google Scholar]
- Banasiak, J.; Lachowicz, M. Methods of Small Parameter in Mathematical Biology; Birkhäuser: New York, NY, USA, 2014. [Google Scholar]
- Reia, S.M.; Fontanari, J.F. Effect of group organization on the performance of cooperative processes. Ecol. Complex. 2017, 30, 47–56. [Google Scholar] [CrossRef]
- Coldwell, D. Entropic Citizenship Behavior and Sustainability in Urban Organizations: Towards a Theoretical Model. Entropy 2016, 18, 453. [Google Scholar] [CrossRef]
- Baez, J.-C.; Pollard, B.-S. Relative Entropy in Biological Systems. Entropy 2016, 18, 46. [Google Scholar] [CrossRef]
- Gencay, R.; Gradojevic, N. The Tale of Two Financial Crises: An Entropic Perspective. Entropy 2017, 19, 244. [Google Scholar] [CrossRef]
- Mata, M.-E.; Machado, J.-T. Entropy Analysis of Monetary Unions. Entropy 2017, 19, 245. [Google Scholar] [CrossRef]
- Sourati, J.; Akcakaya, M.; Dy, J.-G.; Leen, T.-K.; Erdogmus, D. Classification Active Learning Based on Mutual Information. Entropy 2016, 18, 51. [Google Scholar] [CrossRef]
- Rangel-Huerta, A.; Ballinas-Hernandez, A.L.; Muñoz-Meléndezb, A. An entropy model to measure heterogeneity of pedestrian crowds using self-propelled agents. Physica A 2017, 473, 213–224. [Google Scholar] [CrossRef]
- Bellomo, N.; Bellouquid, A.; Chouhad, N. From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid. Math. Model. Methods Appl. Sci. 2016, 26, 2041–2069. [Google Scholar] [CrossRef]
- Bellouquid, A.; Delitala, M. Mathematical Modeling of Complex Biological Systems; Birkhäuser: Boston, DA, USA, 2006. [Google Scholar]
- Stinner, C.; Surulescu, C.; Uatay, A. Global existence of a go-or-grow multiscale model for tumor invasion with therapy. Math. Model. Methods Appl. Sci. 2016, 26, 2163–2201. [Google Scholar] [CrossRef]
- Marsan, G.A.; Bellomo, N.; Gibelli, L. Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics. Math. Model. Methods Appl. Sci. 2016, 26, 1051–1093. [Google Scholar] [CrossRef]
- Dolfin, M.; Lachowicz, M. Modeling altruism and selfishness in welfare dynamics: The role of nonlinear interactions. Math. Model. Methods Appl. Sci. 2014, 24, 2469–2482. [Google Scholar] [CrossRef]
- Burini, D.; Chouhad, N. Hilbert method toward a multiscale analysis from kinetic to macroscopic models for active particles. Math. Model. Methods Appl. Sci. 2017, 27, 1327–1353. [Google Scholar] [CrossRef]
- Comte, A. Cours De Philosophie Positive; Bachelier: Paris, France, 1830. [Google Scholar]
- Fanelli, D. Positive results increase down the hierarchy of the sciences. PLoS ONE 2010, 5, e10068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigmund, K. The Calculus of Selfishness; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Bellomo, A.; Colasuonno, F.; Knopoff, D.; Soler, J. From a systems theory of sociology to modeling the onset and evolution of criminality. Netw. Heterog. Media 2015, 10, 421–441. [Google Scholar] [CrossRef]
- Dolfin, M.; Leonida, L.; Outada, N. Modelling human behaviour in economics and social science. Phys. Life Rev. 2017. [Google Scholar] [CrossRef] [PubMed]
- Dolfin, M.; Knopoff, D.; Leonida, L.; Patti, D. Escaping the trap of “blocking”: A kinetic model linking economic development and political competition. Kinet. Relat. Models 2017, 10, 423–443. [Google Scholar]
- Hegselmann, R. Thomas C. Schelling and James M. Sakoda: The Intellectual, Technical, and Social History of a Mode. J. Artif. Soc. Soc. Simul. 2017, 20. [Google Scholar] [CrossRef]
- Burini, D.; Gibelli, L.; Outada, N. A Kinetic Theory Approach to the Modelling of Complex Living Systems; Active Particles -Volume 1- Theory, Models, Applications, Chapter 6; Birkhauser-Springer: New York, NY, USA, 2017; pp. 229–258. [Google Scholar]
- Acemoglu, D.; Robinson, J.-A. Economic backwardness in political perspective. Am. Political Sci. Rev. 2006, 100, 115–131. [Google Scholar] [CrossRef]
- Leonida, L.; Maimone Ansaldo Patti, D.; Marini, A.; Navarra, P. Political competition and economic growth: A test of two tales. Econ. Lett. 2015, 135, 96–99. [Google Scholar] [CrossRef]
- Jusup, M.; Sousab, T.; Domingosb, T.; Labinacc, V.; Marnd, N.; Wange, Z.; Klanjšček, T. Physics of metabolic organization. Phys. Life Rev. 2017, 20, 139. [Google Scholar] [CrossRef] [PubMed]
- Prigogine, I.; Herman, R. Kinetic Theory of Vehicular Traffic; Elsevier: New York, NY, USA, 1971. [Google Scholar]
- Cucker, F.; Smale, S. Emergent behvior in flocks. IEEE Trans. Autom. Control 2007, 52, 852–862. [Google Scholar] [CrossRef]
- Cucker, F.; Dong, J.G. Emergent behvior in flocks. Math. Model. Methods Appl. Sci. 2016, 26, 2685–2708. [Google Scholar] [CrossRef]
- Outada, N.; Vauchelet, N.; Akrid, T.; Khaladi, M. From kinetic theory of multicellular systems to hyperbolic tissue equations: Asymptotic limits and computing. Math. Model. Methods Appl. Sci. 2016, 26, 2709–2734. [Google Scholar] [CrossRef]
- Bellomo, N.; Brezzi, F. Mathematics, complexity and multiscale features of large systems of self-propelled particles. Math. Model. Methods Appl. Sci. 2016, 26, 207–214. [Google Scholar] [CrossRef]
- Othmer, H.G.; Dunbar, S.R.; Alt, W. Models of dispersal in biological systems. J. Math. Biol. 1988, 26, 263–298. [Google Scholar] [CrossRef] [PubMed]
- Othmer, H.G.; Hillen, T. The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math. 2002, 62, 1222–1250. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, X.; Mao, S.; Rao, C.; Wen, J. Grey Coupled Prediction Model for Traffic Flow with Panel Data Characteristics. Entropy 2016, 18, 454. [Google Scholar] [CrossRef]
- Benosman, M.; Mansour, H.; Huroyan, V. Koopman-Operator, Observer-Based Estimation of Pedestrian Crowd Flows. Available online: http://www.merl.com (accessed on 7 September 2017).
- Liao, J. Global solution for a kinetic chemotaxis model with internal dynamics and its fast adaptation limit. J. Differ. Equ. 2015, 259, 6432–6458. [Google Scholar] [CrossRef]
- Bellomo, N.; Winkler, M. A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up. Commun. Partial Differ. Equ. 2017, 42, 436–473. [Google Scholar] [CrossRef]
- Jüngel, A. Entropy Methods for Partial Differential Equations; Springer Briefs in Mathematics (BCAM); Springer: New York, NY, USA, 2016. [Google Scholar]
- Gromov, M. In a Search for A Structure. Part 1: On entropy. Available online: http://www.ihes.fr/~gromov/PDF/structre-serch-entropy-july5-2012.pdf (accessed on 16 July 2014).
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elaiw, A.; Alghamdi, M.; Bellomo, N. On Entropy Dynamics for Active “Living” Particles. Entropy 2017, 19, 525. https://doi.org/10.3390/e19100525
Elaiw A, Alghamdi M, Bellomo N. On Entropy Dynamics for Active “Living” Particles. Entropy. 2017; 19(10):525. https://doi.org/10.3390/e19100525
Chicago/Turabian StyleElaiw, Ahmed, Mohammed Alghamdi, and Nicola Bellomo. 2017. "On Entropy Dynamics for Active “Living” Particles" Entropy 19, no. 10: 525. https://doi.org/10.3390/e19100525
APA StyleElaiw, A., Alghamdi, M., & Bellomo, N. (2017). On Entropy Dynamics for Active “Living” Particles. Entropy, 19(10), 525. https://doi.org/10.3390/e19100525