Comparative Analysis of Jüttner’s Calculation of the Energy of a Relativistic Ideal Gas and Implications for Accelerator Physics and Cosmology
Abstract
:1. Introduction
2. Jüttner Energy Calculation
3. Parametrized Statistical Mechanics
3.1. Relativistic Ideal Gas
3.2. Microcanonical Ensemble
3.3. Ideal Gas Law
4. Horwitz et al., Calculation of the Energy of an Ideal Gas
4.1. Canonical Ensemble
4.2. Energy Calculation
5. Energy Comparison
6. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
References
- Jüttner, F. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann. Phys. 1911, 34, 856–882. [Google Scholar] [CrossRef]
- Pauli, W. Theory of Relativity; Dover: New York, NY, USA, 1958. [Google Scholar]
- Greiner, W.; Neise, L.; Stöcker, H. Thermodynamics and Statistical Mechanics; Springer-Verlag: New York, NY, USA, 1995. [Google Scholar]
- Horwitz, L.P.; Schieve, W.C.; Piron, C. Gibbs ensembles in relativistic classical and quantum mechanics. Ann. Phys. 1981, 137, 306–340. [Google Scholar] [CrossRef]
- Fanchi, J.R. Parametrized Relativistic Quantum Theory; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Fanchi, J.R. Manifestly Covariant Quantum Theory with Invariant Evolution Parameter in Relativistic Dynamics. Found. Phys. 2011, 41, 4–32. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1972. [Google Scholar]
- Arfken, G. Mathematical Methods for Physicists; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Schieve, W.C.; Horwitz, L.P. Quantum Statistical Mechanics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Horwitz, L.P. Relativistic Quantum Mechanics; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Chacón-Acosta, G.; Dagdug, L.; Morales-Técotl, H.A. Manifestly covariant Jüttner distribution and equipartition theorem. Phys. Rev. E 2010, 81, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ghodrat, M.; Montakhab, A. Time parametrization and stationary distributions in a relativistic gas. Phys. Rev. E 2010, 82, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, L.P.; Shashoua, S.; Schieve, W.C. A Manifestly Covariant Relativistic Boltzmann Equation for the Evolution of a System of Events. Phys. A 1989, 161, 300–338. [Google Scholar] [CrossRef]
- Debbasch, F. Equilibrium distribution function of a relativistic dilute perfect gas. Phys. A 2008, 387, 2443–2454. [Google Scholar] [CrossRef]
- Schieve, W.C. Covariant Relativistic Statistical Mechanics of Many Particles. Found. Phys. 2005, 35, 1359–1381. [Google Scholar] [CrossRef]
- Pavšič, M. The Landscape of Theoretical Physics: A Global View; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Fanchi, J.R. A generalized quantum field theory. Phys. Rev. D 1979, 20, 3108–3119. [Google Scholar] [CrossRef]
- Pavšič, M. Branes and Quantized Fields. J. Phys. 2017, 845, 1–27. [Google Scholar] [CrossRef]
- Pavšič, M. Localized Propagating Tachyons in Extended Relativity Theories; Cornell University Library: Ithaca, NY, USA, 2012. [Google Scholar]
- Carnahan, B.; Luther, H.A.; Wilkes, J.O. Applied Numerical Methods; Wiley: New York, NY, USA, 1969. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Fanchi, J.R. Cosmological implications of the Gibbs ensemble in parametrized relativistic classical mechanics. Phys. Rev. A 1988, 37, 3956–3962. [Google Scholar] [CrossRef]
- Patrignani, C.; et al.; (Particle Data Group) Review of Particle Physics. Chin. Phys. C 2016, 40, 100001. Available online: http://pdg.lbl.gov/2017/reviews/rpp2016-rev-hep-collider-params.pdf (accessed on 29 June 2017).
- CERN (2017). Available online: https://home.cern/topics/large-hadron-collider (accessed on 29 June 2017).
- ALICE Collaboration. Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions. Nat. Phys. 2017, 13, 535–538. [Google Scholar]
- Land, M. Speeds of light in Stueckelberg-Horwitz-Piron electrodynamics. J. Phys. 2017, 845, 1–17. [Google Scholar] [CrossRef]
- Land, M. The Particle as a Statistical Ensemble of Events in Stueckelberg–Horwitz–Piron Electrodynamics. Entropy 2017, 19, 234. [Google Scholar] [CrossRef]
- Patrignani, C.; et al.; (Particle Data Group) Review of Particle Physics. Chin. Phys. C 2016, 40, 100001. Available online: http://pdg.lbl.gov/2016/reviews/rpp2016-rev-bbang-cosmology.pdf (accessed on 29 June 2017).
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanchi, J.R. Comparative Analysis of Jüttner’s Calculation of the Energy of a Relativistic Ideal Gas and Implications for Accelerator Physics and Cosmology. Entropy 2017, 19, 374. https://doi.org/10.3390/e19070374
Fanchi JR. Comparative Analysis of Jüttner’s Calculation of the Energy of a Relativistic Ideal Gas and Implications for Accelerator Physics and Cosmology. Entropy. 2017; 19(7):374. https://doi.org/10.3390/e19070374
Chicago/Turabian StyleFanchi, John R. 2017. "Comparative Analysis of Jüttner’s Calculation of the Energy of a Relativistic Ideal Gas and Implications for Accelerator Physics and Cosmology" Entropy 19, no. 7: 374. https://doi.org/10.3390/e19070374
APA StyleFanchi, J. R. (2017). Comparative Analysis of Jüttner’s Calculation of the Energy of a Relativistic Ideal Gas and Implications for Accelerator Physics and Cosmology. Entropy, 19(7), 374. https://doi.org/10.3390/e19070374