Investigation of Oriented Magnetic Field Effects on Entropy Generation in an Inclined Channel Filled with Ferrofluids †
Abstract
:1. Introduction
2. Mathematical Modelling
- The plates are infinitely long, enabling to consider the problem one dimensional.
- The induced magnetic field is neglected when compared with the applied magnetic field, due to inherently small magnetic Reynolds number for magnetic liquids and partially ionized fluids [43].
- The flow is assumed to be fully developed and the edge effects are neglected.
2.1. Generalized Differential Quadrature Method (GDQM)
2.2. Entropy Generation
3. Simulations and Results
4. Discussion
Author Contributions
Conflicts of Interest
Abbreviations
magnetic field intensity | |
specific heat (J/K) | |
H | channel diameter (m) |
N | number of grids |
g | gravitational acceleration (m/s) |
k | thermal conductivity (W/mK) |
magnetic field orientation angle (rad) | |
inclination angle (rad) | |
thermal diffusivity (m/s) | |
solid volume fraction | |
dynamic viscosiy (m/s) | |
kinematics viscosity (m/s) | |
electrical conductivity | |
Hartmann number | |
Rayleigh number | |
Eckert number | |
Prantl number | |
Brinkman number | |
u | x component of velocity vector (m/s) |
U | dimensionless x component of velocity vector |
T | temperature (K) |
dimensionless temperature | |
cartesian coordinates (m) | |
dimensionless cartesian coordinates | |
f | fluid |
p | nanoparticle |
nanofluid |
References
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon: Oxford, UK, 1904. [Google Scholar]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA, USA, 12–17 November 1995. [Google Scholar]
- Eastman, J.; Choi, U.; Li, S.; Thompson, L.; Lee, S. Enhanced thermal conductivity through the development of nanofluids. MRS Online Proc. Libr. Arch. 1996, 457. [Google Scholar] [CrossRef]
- Liu, M.S.; Lin, M.C.; Huang, I.T.; Wang, C.C. Enhancement of thermal conductivity with CuO for nanofluids. Chem. Eng. Technol. 2006, 29, 72–77. [Google Scholar] [CrossRef]
- Hwang, Y.; Park, H.; Lee, J.; Jung, W. Thermal conductivity and lubrication characteristics of nanofluids. Curr. Appl. Phys. 2006, 6, e67–e71. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Chen, L.; Li, Y. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim. Acta 2009, 491, 92–96. [Google Scholar] [CrossRef]
- Mintsa, H.A.; Roy, G.; Nguyen, C.T.; Doucet, D. New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 2009, 48, 363–371. [Google Scholar] [CrossRef]
- Verma, P.; Chaturvedi, P.; Rawat, J.S.; Kumar, M.; Pal, S.; Bal, M.; Rawal, D.; Vyas, H.P.; Ghosal, P.; Bhatnagar, P. Elimination of current non-uniformity in carbon nanotube field emitters. J. Mater. Sci. Mater. Electron. 2007, 18, 677–680. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Du, Y.; Zhang, X.; Li, Y. Ultrasonic velocity and attenuation in nano-structured Zn materials. Mater. Lett. 1996, 29, 131–134. [Google Scholar] [CrossRef]
- Eastman, J.A.; Choi, S.; Li, S.; Yu, W.; Thompson, L. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Bondareva, N.; Sheremet, M.A.; Pop, I. Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid: Buongiorno’s mathematical model. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 1924–1946. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Pop, I. Natural convection in a wavy porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model. J. Heat Transf. 2015, 137, 072601. [Google Scholar] [CrossRef]
- Baskaya, E.; Fidanoglu, M.; Komurgoz, G.; Ozkol, I. Investigation of MHD natural convection flow exposed to constant magnetic field via generalized differential quadrature method. In Proceedings of the ASME 12th Biennial Conference on Engineering Systems Design and Analysis, Copenhagen, Denmark, 25–27 July 2014. [Google Scholar]
- Jang, S.P.; Choi, S. Effects of Various Parameters on Nanofluid Thermal Conductivity. J. Heat Transf. 2006, 129, 617–623. [Google Scholar] [CrossRef]
- Nacev, A. Magnetic Drug Targeting: Developing the Basics. Ph.D. Thesis, The University of Maryland, College Park, MD, USA, 2013. [Google Scholar]
- Arruebo, M.; Fernandez-Pacheco, R.; Ibarra, M.R.; Santamaria, J. Magnetic nanoparticles for drug delivery. Nano Today 2007, 2, 22–32. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Obson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. Appl. Phys. 2003, 36, R167. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Thanh, N.K.; Jones, S.K.; Obson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. Appl. Phys. 2009, 42, 224001. [Google Scholar] [CrossRef]
- Lubbe, A.S.; Bergemann, C.; Riess, H.; Schriever, F.; Reichardt, P.; Possinger, K.; Matthias, M.; Dorken, B.; Herrmann, F.; Gurtler, R.; et al. Clinical experiences with magnetic drug targeting: A phase I study with 4-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996, 56, 4686–4693. [Google Scholar] [PubMed]
- Obson, J. Magnetic micro- and nano-particle-based targeting for drug and gene delivery. Nanomedicine 2006, 1, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Sheremet, M.A.; Oztop, H.F.; Pop, I.; Abu-Hamdeh, N. Analysis of entropy generation in natural convection of nanofluid inside a square cavity having hot solid block: Tiwari and Das model. Entropy 2015, 18, 9. [Google Scholar] [CrossRef]
- Carnot, N. Reflexions Sur la Puissance Motrice du feu (In France); Bachelier: France, Paris, 1824. [Google Scholar]
- Clausius, R. On a modified form of the second principal theorem of mechanical theory. Ann. Phys. 1854, 169, 481–506. [Google Scholar] [CrossRef]
- Clausius, R. On various forms of the principal equations of mechanical theory. Ann. Phys. 1865, 201, 353–400. [Google Scholar] [CrossRef]
- Bejan, A. Second law analysis in heat transfer. Energy Int. 1980, 5, 721–732. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Through Heat and Fluid Flow; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Bejan, A. Second-law analysis in heat transfer and thermal design. Adv. Heat Transf. 1982, 15, 1–58. [Google Scholar]
- Bejan, A. Entropy Generation Minimization; CRC Press: New York, NY, USA, 1995. [Google Scholar]
- Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 1979, 101, 718–725. [Google Scholar] [CrossRef]
- Bejan, A.; Tsatsaronis, G.; Moran, M. Thermal Design and Optimization; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Roy, M.; Basak, T.; Roy, S.; Pop, I. Analysis of Entropy Generation for Mixed Convection in a Square Cavity for Various Thermal Boundary Conditions. Numer. Heat Transf. Part A Appl. 2015, 68, 44–74. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Dalal, A. Effect of Undulations on the Natural Convection Heat Transfer and Entropy Generations Inside a Porous Right-Angled Triangular Enclosure. Numer. Heat Transf. Part A Appl. 2015, 67, 972–991. [Google Scholar] [CrossRef]
- Yang, Y.T.; Wang, Y.H.; Yi-Hsien, H.; Huang, B.Y. Numerical Optimization for Nanofluid Flow in Microchannels using Entropy Generation Minimization. Numer. Heat Transf. Part A Appl. 2015, 67, 571–588. [Google Scholar] [CrossRef]
- Komurgoz, G.; Arikoglu, A.; Turker, E.; Ozkol, I. Second-Law Analysis for an Inclined Channel Containing Porous-Clear Fluid Layers by Using the Differential Transform Method. Numer. Heat Transf. Part A Appl. 2010, 57, 603–623. [Google Scholar] [CrossRef]
- Salas, H.; Cuevas, S.; de Haro, M.L. Entropy Generation Analysis of Magnetohydrodynamic Induction Devices. J. Phys. D Appl. Phys. 1999, 32, 2605–2608. [Google Scholar] [CrossRef]
- Mahmud, S.; Tasnim, S.H.; Mamun, M.A.H. Thermodynamic Analysis of Mixed Convection in a Channel with Transverse Hydromagnetic Effect. Int. J. Therm. Sci. 2003, 42, 731–740. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Kumar, V. Heat transfer and entropy generation during compressible fluid flow in a channel partially filled with porous medium. Int. J. Energy Technol. 2011, 3, 1–10. [Google Scholar]
- Tasnim, S.; Mahmud, S.; Mamum, M. Entropy generation in a porous channel with hydromagetic effect. Int. J. Exergy 2002, 3, 300–308. [Google Scholar] [CrossRef]
- Eegunjobi, A.S.; Makinde, O.D. Combined effect of buoyancy force and Navier slip on entropy generation in a vertical porous channel. Entropy 2012, 14, 1028–1044. [Google Scholar] [CrossRef]
- El Jery, A.; Hidouri, N.; Magherbi, M.; Brahim, A.B. Effect of an External Oriented Magnetic Field on Entropy Generation in Natural Convection. Entropy 2010, 12, 1391–1417. [Google Scholar] [CrossRef]
- Dwivedi, R.; Singh, S.P.; Singh, B.B. Analysis of incompressible viscous laminar flow through a channel filled with porous media. Int. J. Stab. Fluid Mech. 2010, 1, 127–134. [Google Scholar]
- Makinde, O.D.; Chinyoka, T. Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction/injection. Mech. Sci. Technol. 2013, 27, 1557–1568. [Google Scholar] [CrossRef]
- Cramer, K.; Pai, S. Magnetofluiddynamics for Engineers and Applied Plysicists; McGraw Hill Book Company: New York, NY, USA, 1973. [Google Scholar]
- Seth, G.S.; Ansari, M.S.; Nandkeolyar, R. Unsteady Hydromagnetic Couette Flow within a porous Channel. Tamkang J. Sci. Eng. 2011, 14, 7–14. [Google Scholar]
- Eegunjobi, A.S.; Makinde, O.D. Entropy Generation Analysis in a Variable Viscosity MHD Channel Flow with Permeable Walls and Convective Heating. Math. Probl. Eng. 2013, 2013, 630798. [Google Scholar] [CrossRef]
- Das, S.; Jana, R.N. Entropy Generation in MHD Porous Channel Flow Under Constant Pressure Gradient. Appl. Math. Phys. 2013, 1, 78–89. [Google Scholar]
- Hayat, T.; Bibi, S.; Rafiq, M.; Alsaedi, A.; Abbasi, F. Effect of an inclined magnetic field on peristaltic flow of Williamson fluid in an inclined channel with convective conditions. J. Magn. Magn. Mater. 2016, 401, 733–745. [Google Scholar] [CrossRef]
- Mehrez, Z.; El Cafsi, A.; Belghith, A.; Le Quéré, P. MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity. J. Magn. Magn. Mater. 2015, 374, 214–224. [Google Scholar] [CrossRef]
- Cimpean, D.S.; Pop, I. Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. Int. J. Heat Mass Transf. 2012, 55, 907–914. [Google Scholar] [CrossRef]
- You, X.C.; Xu, H.; Pop, I. Analysis of Fully Developed Opposing Mixed Convection Flow in an Inclined Channel Filled by a Nanofluid. J. Heat Transf. 2014, 136, 124502. [Google Scholar] [CrossRef]
- Brinkmann, H.C. The Viscosity of Concentrated Suspensions and Solutions. J. Chem. Phys 1952, 20, 571–581. [Google Scholar] [CrossRef]
- Bellman, R.E.; Casti, J. Differential Quadrature and Long Term Integration. J. Math. Anal. Appl. 1971, 34, 235–238. [Google Scholar] [CrossRef]
- Shu, C.; Richards, B.E. High Resolution of Natural Convection in a Square Cavity by Generalized Differential Quadrature. In Proceedings of the 3rd Conference on Advances in Numerical Methods in Engineering, Swansea, UK, 1990. [Google Scholar]
- Shu, C. Differential Quadrature and Its Applications in Engineering; Springer-Verlag: London, UK, 2000. [Google Scholar]
- Woods, L.C. Thermodynamics of Fluid Systems; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Başkaya, E.; Kömürgöz, G.; Özkol, I. Analysis of Variable Viscosity Channel Flow under Constant Magnetic Field via Generalized Differential Quadrature Method. In Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2014. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baskaya, E.; Komurgoz, G.; Ozkol, I. Investigation of Oriented Magnetic Field Effects on Entropy Generation in an Inclined Channel Filled with Ferrofluids. Entropy 2017, 19, 377. https://doi.org/10.3390/e19070377
Baskaya E, Komurgoz G, Ozkol I. Investigation of Oriented Magnetic Field Effects on Entropy Generation in an Inclined Channel Filled with Ferrofluids. Entropy. 2017; 19(7):377. https://doi.org/10.3390/e19070377
Chicago/Turabian StyleBaskaya, Elgiz, Guven Komurgoz, and Ibrahim Ozkol. 2017. "Investigation of Oriented Magnetic Field Effects on Entropy Generation in an Inclined Channel Filled with Ferrofluids" Entropy 19, no. 7: 377. https://doi.org/10.3390/e19070377
APA StyleBaskaya, E., Komurgoz, G., & Ozkol, I. (2017). Investigation of Oriented Magnetic Field Effects on Entropy Generation in an Inclined Channel Filled with Ferrofluids. Entropy, 19(7), 377. https://doi.org/10.3390/e19070377