Survey on Probabilistic Models of Low-Rank Matrix Factorizations
Abstract
:1. Introduction
2. Probability Distributions and Conjugate Priors
2.1. Probability Distributions
2.2. Conjugate Priors
3. Gibbs Sampling and Variational Bayesian Inference
3.1. Gibbs Sampling
1. Initialize . |
2. For |
For |
Generate from the conditional probability distribution . |
End |
End |
3.2. Variational Bayesian Inference
3.3. Comparisons between Gibbs Sampling and Variational Bayesian Inference
4. Probabilistic Models of Principal Component Analysis
4.1. Principal Component Analysis
4.2. Probabilistic Principal Component Analysis
4.3. Bayesian Principal Component Analysis
4.4. Robust L1 Principal Component Analysis
4.5. Bayesian Robust Factor Analysis
5. Probabilistic Models of Matrix Factorizations
5.1. Matrix Factorizations
5.2. Probabilistic Matrix Factorization
5.3. Variational Bayesian Approach to Probabilistic Matrix Factorization
5.4. Bayesian Probabilistic Matrix Factorizations Using Markov Chain Monte Carlo
5.5. Sparse Bayesian Matrix Completion
5.6. Robust Bayesian Matrix Factorization
5.7. Probabilistic Robust Matrix Factorization
5.8. Bayesian Robust Matrix Factorization
5.9. Bayesian Model for L1-Norm Low-Rank Matrix Factorizations
6. Probabilistic Models of Robust PCA
6.1. Bayesian Robust PCA
6.2. Variational Bayes Approach to Robust PCA
6.3. Sparse Bayesian Robust PCA
7. Probabilistic Models of Non-Negative Matrix Factorization
7.1. Probabilistic Non-Negative Matrix Factorization
7.2. Bayesian Inference for Nonnegative Matrix Factorization
7.3. Bayesian Nonparametric Matrix Factorization
7.4. Beta-Gamma Non-Negative Matrix Factorization
8. Other Probabilistic Models of Low-Rank Matrix/Tensor Factorizations
9. Conclusions and Future Work
- Scalable algorithms to infer the probability distributions and parameters. Although both Gibbs sampling and variational Bayesian inference have their own advantages, they need large computation cost for real large-scale problems. A promising future direction is to design scalable algorithms.
- Constructing new probabilistic models of low-rank matrix factorizations. It is necessary to develop other probabilistic models according to the actual situation. For example, we can consider different types of sparse noise and different probability distributions (including the prior distributions) of low-rank components or latent variables.
- Probabilistic models of non-negative tensor factorizations. There is not much research on this type of probabilistic models. Compared with probabilistic models of tensor factorizations, the probabilistic non-negative tensor factorizations models are more complex and difficult in inferring the posterior distributions.
- Probabilistic TT format. In contrast to both CP and Tucker decompositions, the TT format provides stable representations and is formally free from the curse of dimensionality. Hence, probabilistic model of the TT format would be an interesting research issue.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jolliffe, I. Principal Component Analysis; John Wiley & Sons, Ltd.: Mississauga, ON, Canada, 2002. [Google Scholar]
- Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. Numer. Math. 1970, 14, 403–420. [Google Scholar] [CrossRef]
- Ke, Q.; Kanade, T. Robust L1 norm factorizations in the presence of outliers and missing data by alternative convex programming. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR); IEEE Computer Society: Washington, DC, USA, 2005. [Google Scholar]
- Kwak, N. Principal component analysis based on L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1672–1680. [Google Scholar] [CrossRef] [PubMed]
- Nie, F.; Huang, H. Non-greedy L21-norm maximization for principal component analysis. arXiv 2016. [Google Scholar]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 11. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorizations. Nature 1999, 401, 788–791. [Google Scholar] [PubMed]
- Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717–772. [Google Scholar] [CrossRef]
- Tipping, M.E.; Bishop, C.M. Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B 1999, 21, 611–622. [Google Scholar] [CrossRef]
- Bishop, C.M. Variational principal components. In Proceedings of the Ninth International Conference on Artificial Neural Networks, Edinburgh, UK, 7–10 September 1999. [Google Scholar]
- Gao, J. Robust L1 principal component analysis and its Bayesian variational inference. Neural Comput. 2008, 20, 55–572. [Google Scholar] [CrossRef] [PubMed]
- Luttinen, J.; Ilin, A.; Karhunen, J. Bayesian robust PCA of incomplete data. Neural Process. Lett. 2012, 36, 189–202. [Google Scholar] [CrossRef]
- Lim, Y.J.; Teh, Y.W. Variational Bayesian approach to movie rating prediction. In Proceedings of the KDD Cup and Workshop, San Jose, CA, USA, 12 August 2007. [Google Scholar]
- Salakhutdinov, R.; Mnih, A. Probabilistic matrix factorization. In Proceedings of the 20th Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007. [Google Scholar]
- Salakhutdinov, R.; Mnih, A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008. [Google Scholar]
- Lakshminarayanan, B.; Bouchard, G.; Archambeau, C. Robust Bayesian matrix factorization. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Lauderdale, FL, USA, 11–13 April 2011. [Google Scholar]
- Wang, N.; Yao, T.; Wang, J.; Yeung, D.-Y. A probabilistic approach to robust matrix factorization. In Proceedings of the 12th European Conference on Computer Vision (ECCV), Florence, Italy, 7–13 October 2012. [Google Scholar]
- Babacan, S.D.; Luessi, M.; Molina, R.; Katsaggelos, K. Sparse Bayesian methods for low-rank matrix estimation. IEEE Trans. Signal Process. 2012, 60, 3964–3977. [Google Scholar] [CrossRef]
- Wang, N.; Yeung, D.-Y. Bayesian robust matrix factorization for image and video processing. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Zhao, Q.; Meng, D.; Xu, Z.; Zuo, W.; Yan, Y. L1-norm low-rank matrix factorization by variational Bayesian method. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; He, L.; Carin, L. Bayesian robust principal component analysis. IEEE Trans. Image Process. 2011, 20, 3419–3430. [Google Scholar] [CrossRef] [PubMed]
- Aicher, C. A variational Bayes approach to robust principal component analysis. In SFI REU 2013 Report; University of Colorado Boulder: Boulder, CO, USA, 2013. [Google Scholar]
- Févotte, C.; Cemgil, A.T. Nonnegative matrix factorizations as probabilistic inference in composite models. In Proceedings of the IEEE 17th European Conference on Signal Processing, Glasgow, UK, 24–28 August 2009. [Google Scholar]
- Cemgil, A.T. Bayesian inference for nonnegative matrix factorization models. Comput. Intell. Neurosci. 2009, 2009, 785152. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.; Cook, P.R.; Blei, D.M. Bayesian nonparametric matrix factorization for recorded music. In Proceedings of the International Conference on Machine Learning, Washington, DC, USA, 12–14 December 2010. [Google Scholar]
- Paisley, J.; Blei, D.; Jordan, M. Bayesian nonnegative matrix factorization with stochastic variational inference. In Handbook of Mixed Membership Models and Their Applications, Chapman and Hall; CRC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Ma, Z.; Teschendorff, A.E.; Leijon, A.; Qiao, Y.; Zhang, H.; Guo, J. Variational Bayesian matrix factorizations for bounded support data. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 876–889. [Google Scholar] [CrossRef] [PubMed]
- Hackbusch, W.; Kühn, S. A new scheme for the tensor representation. J. Fourier Anal. Appl. 2009, 15, 706–722. [Google Scholar] [CrossRef]
- Grasedyck, L.; Hackbusch, W. An introduction to hierarchical (H-) rank and TT-rank of tensors with examples. Comput. Methods Appl. Math. 2011, 11, 291–304. [Google Scholar] [CrossRef]
- Oseledets, I.V.; Tyrtyshnikov, E.E. Breaking the curse of dimensionality, or how to use SVD in many dimensions. Soc. Ind. Appl. Math. 2009, 31, 3744–3759. [Google Scholar] [CrossRef]
- Oseledets, I.V. Tensor-train decomposition. SIAM J. Sci. Comput. 2011, 33, 2295–2317. [Google Scholar] [CrossRef]
- Holtz, S.; Rohwedder, T.; Schneider, R. The alternating linear scheme for tensor optimization in the tensor train format. SIAM J. Sci. Comput. 2012, 34, A683–A713. [Google Scholar] [CrossRef]
- Chu, W.; Ghahramani, Z. Probabilistic models for incomplete multi-dimensional arrays. In Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), Clearwater, FL, USA, 16–18 April 2009. [Google Scholar]
- Hayashi, K.; Takenouchi, T.; Shibata, T.; Kamiya, Y.; Kato, D.; Kunieda, K.; Yamada, K.; Ikeda, K. Exponential family tensor factorizations for missing-values prediction and anomaly detection. In Proceedings of the IEEE 10th International Conference on Data Mining, Sydney, Australia, 13–17 December 2010. [Google Scholar]
- Xu, Z.; Yan, F.; Qi, Y. Bayesian nonparametric models for multiway data analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Ermis, B.; Cemgil, A. A Bayesian tensor factorization model via variational inference for link prediction. arXiv 2014. [Google Scholar]
- Porteous, I.; Bart, E.; Welling, M. Multi-HDP: A nonparametric Bayesian model for tensor factorization. In Proceedings of the National Conference on Artificial Intelligence, Chicago, IL, USA, 13–17 July 2008. [Google Scholar]
- Xiong, L.; Chen, X.; Huang, T.; Schneiderand, J.G.; Carbonell, J.G. Temporal collaborative filtering with Bayesian probabilistic tensor factorization. In Proceedings of the SIAM Data Mining, Columbus, OH, Canada, 29 April–1 May 2010. [Google Scholar]
- Gao, S.; Denoyer, L.; Gallinari, P.; Guo, J. Probabilistic latent tensor factorizations model for link pattern prediction in multi-relational networks. J China Univ. Posts Telecommun. 2012, 19, 172–181. [Google Scholar] [CrossRef]
- Rai, P.; Wang, Y.; Guo, S.; Chen, G.; Dunson, D.; Carin, L. Scalable Bayesian low-rank decomposition of incomplete multiway tensors. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014. [Google Scholar]
- Schein, A.; Paisley, J.; Blei, D.M.; Wallach, H. Inferring polyadic events with Poisson tensor factorization. In Proceedings of the NIPS 2014 Workshop on Networks: From Graphs to Rich Data, Montreal, QC, Canada, 13 December 2014. [Google Scholar]
- Schein, A.; Paisley, J.; Blei, D.M. Bayesian Poisson tensor factorization for inferring multilateral relations from sparse dyadic event counts. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Sydney, Australia, 10–13 August 2015. [Google Scholar]
- Hu, C.; Rai, P.; Chen, C.; Harding, M.; Carin, L. Scalable Bayesian non-negative tensor factorization for massive count data. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer International Publishing AG: Cham, Switzerland, 2015. [Google Scholar]
- Rai, P.; Hu, C.; Harding, M.; Carin, L. Scalable probabilistic tensor factorization for binary and count data. In Proceedings of the 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]
- Hu, C.; Rai, P.; Carin, L. Zero-truncated Poisson tensor factorization for massive binary tensors. arXiv 2015. [Google Scholar]
- Zhao, Q.; Zhou, G.; Zhang, L.; Cichocki, A.; Amari, S.I. Bayesian robust tensor factorization for incomplete multiway data. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, L.; Cichocki, A. Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 37, 1751–1763. [Google Scholar] [CrossRef] [PubMed]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. Ser. B 1977, 39, 1–38. [Google Scholar]
- Jeff Wu, C.F. On the convergence properties of the EM algorithm. Ann. Stat. 1983, 11, 95–103. [Google Scholar]
- Xu, L.; Jordan, M.I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Comput. 1995, 8, 129–151. [Google Scholar] [CrossRef]
- Hunter, D.R.; Lange, K. A tutorial on MM algorithms. Am. Stat. 2004, 58, 30–37. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.; Stern, H.S.; Dunson, D.; Vehtari, A.; Rubin, D. Bayesian Data Analysis; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Casella, G.; George, E.I. Explaining the Gibbs sampler. Am. Stat. 1992, 46, 167–174. [Google Scholar]
- Gilks, W.R.; Wild, P. Adaptive rejection sampling for Gibbs sampling. J. R. Stat. Soc. Ser. C Appl. Stat. 1992, 41, 337–348. [Google Scholar] [CrossRef]
- Liu, J.S. The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. J. Am. Stat. Assoc. 1994, 89, 958–966. [Google Scholar] [CrossRef]
- Gilks, W.R.; Best, N.G.; Tan, K.K.C. Adaptive rejection metropolis sampling within Gibbs sampling. J. R. Stat. Soc. Ser. C Appl. Stat. 1995, 44, 455–472. [Google Scholar] [CrossRef]
- Martino, L.; Míguez, J. A generalization of the adaptive rejection sampling algorithm. Stat. Comput. 2010, 21, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Martino, L.; Read, J.; Luengo, D. Independent doubly adaptive rejection metropolis sampling within Gibbs sampling. IEEE Trans. Signal Process. 2015, 63, 3123–3138. [Google Scholar] [CrossRef]
- Bernardo, J.M.; Smith, A.F.M. Bayesian Theory; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Jordan, M.I.; Ghahramani, Z.; Jaakkola, T.; Saul, L.K. An introduction to variational methods for graphical models. Mach. Learn. 1999, 37, 183–233. [Google Scholar] [CrossRef]
- Attias, H. A variational Bayesian framework for graphical models. Adv. Neural Inf. Process. Syst. 2000, 12, 209–215. [Google Scholar]
- Beal, M.J. Variational Algorithms for Approximate Bayesian Inference; University of London: London, UK, 2003. [Google Scholar]
- Smídl, V.; Quinn, A. The Variational Bayes Method in Signal Processing; Springer: New York, NY, USA, 2005. [Google Scholar]
- Blei, D.; Jordan, M. Variational inference for Dirichlet process mixtures. Bayesian Anal. 2006, 1, 121–144. [Google Scholar] [CrossRef]
- Beal, M.J.; Ghahramani, Z. The variational Bayesian EM algorithm for incomplete data: With application to scoring graphical model structures. In Proceedings of the IEEE International Conference on Acoustics Speech & Signal Processing, Toulouse, France, 14–19 May 2006. [Google Scholar]
- Schölkopf, B.; Platt, J.; Hofmann, T. A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Tzikas, D.G.; Likas, A.C.; Galatsanos, N.P. The variational approximation for Bayesian inference. IEEE Signal Process. Mag. 2008, 25, 131–146. [Google Scholar] [CrossRef]
- Chen, Z.; Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Variational Bayesian methods for multimedia problems. IEEE Trans. Multimed. 2014, 16, 1000–1017. [Google Scholar] [CrossRef]
- Fink, D. A Compendium of Conjugate Priors. Available online: https://www.johndcook.com/CompendiumOfConjugatePriors.pdf (accessed on 17 August 2017).
- Pearl, J. Evidential reasoning using stochastic simulation. Artif. Intell. 1987, 32, 245–257. [Google Scholar] [CrossRef]
- Tierney, L. Markov chains for exploring posterior distributions. Ann. Stat. 1994, 22, 1701–1762. [Google Scholar] [CrossRef]
- Besag, J.; Green, P.J.; Hidgon, D.; Mengersen, K. Bayesian computation and stochastic systems. Stat. Sci. 1995, 10, 3–66. [Google Scholar] [CrossRef]
- Gilks, W.R.; Richardson, S.; Spiegelhalter, D.J. Markov Chain Monte Carlo in Practice; Chapman and Hall: Suffolk, UK, 1996. [Google Scholar]
- Brooks, S.P. Markov chain Monte Carlo method and its application. J. R. Stat. Soc. Ser. D Stat. 1998, 47, 69–100. [Google Scholar] [CrossRef]
- Beichl, I.; Sullivan, F. The Metropolis algorithm. Comput. Sci. Eng. 2000, 2, 65–69. [Google Scholar] [CrossRef]
- Liu, J.S. Monte Carlo Strategies in Scientific Computing; Springer: Berlin, Germany, 2001. [Google Scholar]
- Andrieu, C.; Freitas, N.D.; Doucet, A.; Jordan, M.I. An Introduction to MCMC for machine learning. Mach. Learn. 2003, 50, 5–43. [Google Scholar] [CrossRef]
- Von der Linden, W.; Dose, V.; von Toussaint, U. Bayesian Probability Theory: Applications in the Physical Sciences; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Liu, J.S.; Liang, F.; Wong, W.H. The Multiple-try method and local optimization in Metropolis sampling. J. Am. Stat. Assoc. 2000, 95, 121–134. [Google Scholar] [CrossRef]
- Martino, L.; Read, J. On the flexibility of the design of multiple try Metropolis schemes. Comput. Stat. 2013, 28, 2797–2823. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; John Wiley & Sons: Hoboken, NJ, USA, 1959. [Google Scholar]
- Johnson, D.H.; Sinanovic, S. Symmetrizing the Kullback–Leibler distance. IEEE Trans. Inf. Theory 2001, 9, 96–99. [Google Scholar]
- Erven, T.V.; Harremos, P.H. Rényi divergence and Kullback–Leibler divergence. IEEE Trans. Inf. Theory 2013, 60, 3797–3820. [Google Scholar] [CrossRef]
- Nakajima, S.; Sugiyama, M.; Babacan, S.D. Variational Bayesian sparse additive matrix factorization. Mach. Learn. 2013, 92, 319–347. [Google Scholar] [CrossRef]
- Nakajima, S.; Sugiyama, M.; Babacan, S.D. Global analytic solution of fully-observed variational Bayesian matrix factorization. J. Mach. Learn. Res. 2013, 14, 1–37. [Google Scholar]
- Paisley, J.; Blei, D.; Jordan, M. Variational Bayesian inference with stochastic search. arXiv 2012. [Google Scholar]
- Hoffman, M.; Blei, D.; Wang, C.; Paisley, J. Stochastic variational inference. J Mach. Learn. Res. 2013, 14, 1303–1347. [Google Scholar]
- Tipping, M.E.; Bishop, C.M. Mixtures of probabilistic principal component analyzers. Neural Comput. 1999, 11, 443–482. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.E.; Young, J.K.; Matthias, S. Scalable collaborative Bayesian preference learning. In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland, 22–24 April 2014. [Google Scholar]
- Srebro, N.; Tommi, J. Weighted low-rank approximations. In Proceedings of the International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003. [Google Scholar]
- Zhou, Z.; Li, X.; Wright, J.; Candès, E.J.; Ma, Y. Stable principal component pursuit. In Proceedings of the IEEE International Symposium on Information Theory, Austin, TX, USA, 13–18 June 2010. [Google Scholar]
- Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Ma, H.; Liu, C.; King, I.; Lyu, M.R. Probabilistic factor models for web site recommendation. In Proceedings of the 34th international ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, 24–28 July 2011. [Google Scholar]
- Seeger, M.; Bouchard, G. Fast variational Bayesian inference for non-conjugate matrix factorization models. J. Mach. Learn. Res. Proc. Track 2012, 22, 1012–1018. [Google Scholar]
- Hoffman, M. Poisson-uniform nonnegative matrix factorization. In Proceedings of the Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012. [Google Scholar]
- Gopalan, P.; Hofman, J.M.; Blei, D.M. Scalable recommendation with Poisson factorization. arXiv 2014. [Google Scholar]
- Gopalan, P.; Ruiz, F.; Ranganath, R.; Blei, D. Bayesian nonparametric Poisson factorization for recommendation systems. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland, 22–25 April 2014. [Google Scholar]
- Gopalan, P.; Charlin, L.; Blei, D. Content-based recommendations with Poisson factorization. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Gopalan, P.; Ruiz, F.; Ranganath, R.; Blei, D. Bayesian nonparametric Poisson factorization for recommendation systems. J. Mach. Learn. Res. 2014, 33, 275–283. [Google Scholar]
- Gopalan, P.; Hofman, J.M.; Blei, D. Scalable Recommendation with hierarchical Poisson factorization. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, Amsterdam, The Netherlands, 6–10 July 2015. [Google Scholar]
- Gopalan, P.; Hofman, J.; Blei, D. Scalable recommendation with Poisson factorization. In Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, Amsterdam, The Netherlands, 6–10 July 2015. [Google Scholar]
- Ma, H.; Yang, H.; Lyu, M.R.; King, I. SoRec: Social recommendation using probabilistic matrix factorization. In Proceedings of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, CA, USA, 26–30 October 2008. [Google Scholar]
- Paquet, U.; Koenigstein, N. One-class collaborative filtering with random graphs. In Proceedings of the 22nd International Conference on World Wide Web, ACM, Rio de Janeiro, Brazil, 13–17 May 2013. [Google Scholar]
- Liu, Y.; Wu, M.; Miao, C. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput. Biol. 2016, 12, e1004760. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Lobato, J.M.; Houlsby, N.; Ghahramani, Z. Probabilistic matrix factorization with non-random missing data. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014. [Google Scholar]
- Koenigstein, N.; Nice, N.; Paquet, U.; Schleyen, N. The Xbox recommender system. In Proceedings of the Sixth ACM Conference on Recommender Systems, Dublin, Ireland, 9–13 September 2012. [Google Scholar]
- Shan, H.; Banerjee, A. Generalized probabilistic matrix factorizations for collaborative filtering. In Proceedings of the Data Mining (ICDM), Sydney, Australia, 13–17 December 2010. [Google Scholar]
- Zhou, T.; Shan, H.; Banerjee, A.; Sapiro, G. Kernelized probabilistic matrix factorization: Exploiting graphs and side information. In Proceedings of the 2012 SIAM International Conference on Data Mining, Anaheim, CA, USA, 26–28 April 2012. [Google Scholar]
- Gonen, M.; Suleiman, K.; Samuel, K. Kernelized Bayesian matrix factorization. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Marlin, B.M.; Zemel, R.S. Collaborative prediction and ranking with non-random missing data. In Proceedings of the Third ACM Conference on Recommender Systems, New York, NY, USA, 23–25 October 2009. [Google Scholar]
- Bolgár, B.; Péter, A. Bayesian matrix factorization with non-random missing data using informative Gaussian process priors and soft evidences. In Proceedings of the Eighth International Conference on Probabilistic Graphical Models, Lugano, Switzerland, 6–9 September 2016. [Google Scholar]
- Babacan, S.D.; Nakajima, S.; Do, M. Probabilistic low-rank subspace clustering. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
Probability Distribution | Notation | Probability Density/Mass Function | Expectation | Variance/Covariance |
---|---|---|---|---|
Bernoulli distribution | ||||
Poisson distribution | ||||
Uniform distribution | ||||
Multivariate Gaussian distribution | is a symmetric, positive definite matrix | |||
Exponential distribution | ||||
Laplace distribution | ||||
Gamma distribution | ||||
Inverse-Gamma distribution | for | for | ||
Student’s t-distribution | for | |||
Beta distribution | ||||
Wishart distribution | is a symmetric, positive definite matrix | for | ||
Inverse Gaussian distribution | ||||
Generalized inverse Gaussian distribution |
Probabilistic Model | Deterministic Variables | Random Variables | Prior Distributions | Solving Strategy |
---|---|---|---|---|
Probabilistic PCA [10] | - | ML EM | ||
Bayesian PCA [11] | - | VB | ||
Robust L1 PCA [12] | VB | |||
Probabilistic factor analysis [13] | - | VB | ||
Bayesian robust PCA I [13] | - | VB | ||
Bayesian robust PCA II [13] | - | VB |
Probabilistic Model | Random Variables | Prior Distributions | Solving Strategy |
---|---|---|---|
PMF [15] | - | MAP | |
Variational Bayesian PMF [14] | - | VB | |
Bayesian PMF [16] | Gibbs sampling | ||
Sparse Bayesian matrix completion [19] | VB | ||
Robust Bayesian matrix factorization [17] | VB, type II ML, empirical Bayes | ||
Probabilistic robust matrix factorization [18] | EM | ||
Bayesian robust matrix factorization [20] | Gibbs sampling | ||
Bayesian model for L1-norm low-rank matrix factorizations [21] | VB |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Zheng, X.; Yang, W. Survey on Probabilistic Models of Low-Rank Matrix Factorizations. Entropy 2017, 19, 424. https://doi.org/10.3390/e19080424
Shi J, Zheng X, Yang W. Survey on Probabilistic Models of Low-Rank Matrix Factorizations. Entropy. 2017; 19(8):424. https://doi.org/10.3390/e19080424
Chicago/Turabian StyleShi, Jiarong, Xiuyun Zheng, and Wei Yang. 2017. "Survey on Probabilistic Models of Low-Rank Matrix Factorizations" Entropy 19, no. 8: 424. https://doi.org/10.3390/e19080424
APA StyleShi, J., Zheng, X., & Yang, W. (2017). Survey on Probabilistic Models of Low-Rank Matrix Factorizations. Entropy, 19(8), 424. https://doi.org/10.3390/e19080424