The Potential Application of Multiscale Entropy Analysis of Electroencephalography in Children with Neurological and Neuropsychiatric Disorders
Abstract
:1. Introduction
2. The General Concept of Entropy of EEG
3. Definitions and Properties of Entropy Indices Applied on EEG
3.1. Approximate Entropy
3.2. Sample Entropy
3.3. Permutation Entropy
3.4. Spectral Entropy
3.5. Recurrence Quantification Analysis (RQA) Entropy
3.6. Multiscale Entropy
3.7. Modifications of Multiscale Entropy
4. Developmental and Neuropsychiatric Disorders
4.1. Tourette Syndrome
4.2. Autism Spectrum Disorder
4.3. Attention-Deficit/Hyperactivity Disorder
5. Epilepsy and Seizures in Infancy and Childhood
5.1. Childhood Absence Epilepsy
5.2. EEG Application in Neonates
6. Future Applications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barabasi, A.L. Scale-free networks: A decade and beyond. Science 2009, 325, 412–413. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.V.; Van Straaten, E. The organization of physiological brain networks. Clin. Neurophysiol. 2012, 123, 1067–1087. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Solomon, I.; Chon, K. Comparison of the use of approximate entropy and sample entropy: Applications to neural respiratory signal. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005, 4, 4212–4215. [Google Scholar] [PubMed]
- Song, Y.; Liò, P. A new approach for epileptic seizure detection: Sample entropy based feature extraction and extreme learning machine. J. Biomed. Sci. Eng. 2010, 3, 556–567. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Bhat, S.; Koh, J.E. Application of entropies for automated diagnosis of epilepsy using eeg signals: A review. Knowl. Based Syst. 2015, 88, 85–96. [Google Scholar] [CrossRef]
- Bhat, S.; Acharya, U.R.; Adeli, H.; Bairy, G.M.; Adeli, A. Automated diagnosis of autism: In search of a mathematical marker. Rev. Neurosci. 2014, 25, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Acharya, U.R.; Adeli, H.; Bairy, G.M.; Adeli, A. Autism: Cause factors, early diagnosis and therapies. Rev. Neurosci. 2014, 25, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed]
- Bosl, W.; Tierney, A.; Tager-Flusberg, H.; Nelson, C. Eeg complexity as a biomarker for autism spectrum disorder risk. BMC Med. 2011, 9, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catarino, A.; Churches, O.; Baron-Cohen, S.; Andrade, A.; Ring, H. Atypical eeg complexity in autism spectrum conditions: A multiscale entropy analysis. Clin. Neurophysiol. 2011, 122, 2375–2383. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, Y.; Bloy, L.; Edgar, J.C.; Blaskey, L.; Verma, R.; Roberts, T.P. Joint analysis of band-specific functional connectivity and signal complexity in autism. J. Autism Dev. Disord. 2015, 45, 444–460. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, R.; Takahashi, T.; Ueno, K.; Takahashi, K.; Ishitobi, M.; Kikuchi, M.; Higashima, M.; Wada, Y. Changes in eeg complexity with electroconvulsive therapy in a patient with autism spectrum disorders: A multiscale entropy approach. Front. Hum. Neurosci. 2015, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Yoshimura, Y.; Hiraishi, H.; Hasegawa, C.; Munesue, T.; Higashida, H.; Minabe, Y.; Kikuchi, M. Enhanced brain signal variability in children with autism spectrum disorder during early childhood. Hum. Brain Mapp. 2016, 37, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.M.; Damiano, C.R.; Woynaroski, T.G.; Ibañez, L.V.; Murias, M.; Stone, W.L.; Wallace, M.T.; Cascio, C.J. Neural correlates of sensory hyporesponsiveness in toddlers at high risk for autism spectrum disorder. J. Autism Dev. Disord. 2017. [Google Scholar] [CrossRef] [PubMed]
- Bosl, W.J.; Loddenkemper, T.; Nelson, C.A. Nonlinear eeg biomarker profiles for autism and absence epilepsy. Neuropsychiatric Electrophysiol. 2017, 3, 1. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Chen, D.; Li, C.; Qiu, Y.; Wang, J. Altered electroencephalogram complexity in autistic children shown by the multiscale entropy approach. Neuroreport 2017, 28, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Chen, L.; Fu, L.; Jia, Y.; Li, P.; Zhao, X.; Qi, H.; Zhou, P.; Zhang, L.; Wan, B. Visual attention recognition based on nonlinear dynamical parameters of eeg. Biomed. Mater. Eng. 2014, 24, 349–355. [Google Scholar] [PubMed]
- Chenxi, L.; Chen, Y.; Li, Y.; Wang, J.; Liu, T. Complexity analysis of brain activity in attention-deficit/hyperactivity disorder: A multiscale entropy analysis. Brain Res. Bull. 2016, 124, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Chang, C.; Wong, L.; Lin, J.; Lee, W.; Shieh, J. Altered resting-state eeg complexity in children with tourette syndrome: A preliminary study. Neuropsychology 2017, 31, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, G.; Li, J.; Liu, X.; Li, X. Dynamic characteristics of absence eeg recordings with multiscale permutation entropy analysis. Epilepsy Res. 2013, 104, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.C.; Jiang, G.J.; Chang, C.F.; Lu, W.Y.; Lin, C.Y.; Lee, W.T.; Shieh, J.-S. Complexity of multi-channel electroencephalogram signal analysis in childhood absence epilepsy. PLoS ONE 2015, 10, e0134083. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ding, H.; Liu, Y.; Zhou, C.; Ding, H.; Ye, D. Neurodevelopment in newborns: A sample entropy analysis of electroencephalogram. Physiol. Meas. 2009, 30, 491. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.Y.; Chen, J.Y.; Chang, C.F.; Weng, W.C.; Lee, W.T.; Shieh, J.S. Multiscale entropy of electroencephalogram as a potential predictor for the prognosis of neonatal seizures. PLoS ONE 2015, 10, e0144732. [Google Scholar] [CrossRef] [PubMed]
- Clausius, R. The Mechanical Theory of Heat: With Its Applications to The Steam-Engine and to the Physical Properties of Bodies; J. Van Voorst: Irvine, CA, USA, 1867. [Google Scholar]
- Aho, A.; Yli-Hankala, A.; Lyytikäinen, L.P.; Jäntti, V. Facial muscle activity, response entropy, and state entropy indices during noxious stimuli in propofol–nitrous oxide or propofol–nitrous oxide–remifentanil anaesthesia without neuromuscular block. Br. J. Anaesth. 2008, 102, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wang, Y.; Sun, X.; Li, D.; Voss, L.J.; Sleigh, J.W.; Hagihira, S.; Li, X. Eeg entropy measures in anesthesia. Front. Comput. Neurosci. 2015, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Jia, X.; Geocadin, R.G.; Thakor, N.V.; Maybhate, A. Multiscale entropy analysis of eeg for assessment of post-cardiac arrest neurological recovery under hypothermia in rats. IEEE Trans. Biomed. Eng. 2009, 56, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Takahashi, T.; Cho, R.Y.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. Assessment of eeg dynamical complexity in alzheimer’s disease using multiscale entropy. Clin. Neurophysiol. 2010, 121, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Cho, R.Y.; Mizuno, T.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. Antipsychotics reverse abnormal eeg complexity in drug-naive schizophrenia: A multiscale entropy analysis. Neuroimage 2010, 51, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [PubMed]
- Grassberger, P.; Procaccia, I. Estimation of the kolmogorov entropy from a chaotic signal. Phys. Rev. A 1983, 28, 2591. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA. 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Vanluchene, A.L.G.; Vereecke, H.; Thas, O.; Mortier, E.P.; Shafer, S.L.; Struys, M.M.R.F. Spectral entropy as an electroencephalographic measure of anesthetic drug effecta comparison with bispectral index and processed midlatency auditory evoked response. Anesthesiology 2004, 101, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.P.; Crutchfield, J.P. Measures of statistical complexity: Why? Phy. Lett. A 1998, 238, 244–252. [Google Scholar] [CrossRef]
- Webber, C.L., Jr.; Zbilut, J.P. Recurrence quantification analysis of nonlinear dynamical systems. Tutor. Contemp. Nonlinear Methods Behav. Sci. 2005, 2, 26–94. [Google Scholar]
- Marwan, N.; Wessel, N.; Meyerfeldt, U.; Schirdewan, A.; Kurths, J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 2002, 66, 026702. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.B.; He, W.X.; Liu, H. Measuring time series regularity using nonlinear similarity-based sample entropy. Phys. Lett. A 2008, 372, 7140–7146. [Google Scholar] [CrossRef]
- Wu, S.D.; Wu, C.W.; Lin, S.G.; Wang, C.C.; Lee, K.Y. Time series analysis using composite multiscale entropy. Entropy 2013, 15, 1069–1084. [Google Scholar] [CrossRef]
- Supekar, K.; Musen, M.; Menon, V. Development of large-scale functional brain networks in children. PLoS Biol. 2009, 7, e1000157. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Singer, W. Neuronal dynamics and neuropsychiatric disorders: Toward a translational paradigm for dysfunctional large-scale networks. Neuron 2012, 75, 963–980. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.T.; Huang, H.L.; Wong, L.C.; Weng, W.C.; Vasylenko, T.; Jong, Y.J.; Lin, W.S.; Ho, S.Y. Tourette Syndrome as an Independent Risk Factor for Subsequent Sleep Disorders in Children: A Nationwide Population-Based Case-Control Study; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Wong, L.C.; Huang, H.L.; Weng, W.C.; Jong, Y.J.; Yin, Y.J.; Chen, H.A.; Lee, W.T.; Ho, S.Y. Increased risk of epilepsy in children with tourette syndrome: A population-based case-control study. Res. Dev. Disabil. 2016, 51, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Swaiman, K.F.; Ashwal, S.; Ferriero, D.M.; Schor, N.F. Swaiman’s Pediatric Neurology: Principles and Practice; Elsevier Health Sciences: Philadelphia, PA, USA, 2011. [Google Scholar]
- Rothenberger, A.; Roessner, V. Functional neuroimaging investigations of motor networks in tourette syndrome. Behav. Neurol. 2013, 27, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Du, J.C.; Chiu, T.F.; Lee, K.M.; Wu, H.L.; Yang, Y.C.; Hsu, S.Y.; Sun, C.S.; Hwang, B.; Leckman, J.F. Tourette syndrome in children: An updated review. Pediatr. Neonatol. 2010, 51, 255–264. [Google Scholar] [CrossRef]
- Hyde, T.M.; Stacey, M.; Coppola, R.; Handel, S.; Rickler, K.; Weinberger, D. Cerebral morphometric abnormalities in tourette's syndrome a quantitative mri study of monozygotic twins. Neurology 1995, 45, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Maia, T.V.; Marsh, R.; Colibazzi, T.; Gerber, A.; Peterson, B.S. The neural circuits that generate tics in tourette's syndrome. Am. J. Psychiatry 2011, 168, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Worbe, Y.; Malherbe, C.; Hartmann, A.; Pélégrini-Issac, M.; Messé, A.; Vidailhet, M.; Lehéricy, S.; Benali, H. Functional immaturity of cortico-basal ganglia networks in gilles de la tourette syndrome. Brain 2012, 135, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
- Steeves, T.D.; Ko, J.H.; Kideckel, D.M.; Rusjan, P.; Houle, S.; Sandor, P.; Lang, A.E.; Strafella, A.P. Extrastriatal dopaminergic dysfunction in tourette syndrome. Ann. Neurol. 2010, 67, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.W.; Youngstrom, E.A.; Speer, L.; Embacher, R.; Law, P.; Constantino, J.; Findling, R.L.; Hardan, A.Y.; Eng, C. Validation of proposed dsm-5 criteria for autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 2012, 51, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Risch, N.; Hoffmann, T.J.; Anderson, M.; Croen, L.A.; Grether, J.K.; Windham, G.C. Familial recurrence of autism spectrum disorder: Evaluating genetic and environmental contributions. Am. J. Psychiatry 2014, 171, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.G.; Schumann, C.M.; Nordahl, C.W. Neuroanatomy of autism. Trends Neurosci. 2008, 31, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Castellanos, F.X. Functional neuroimaging of social cognition in pervasive developmental disorders: A brief review. Ann. N. Y. Acad. Sci. 2003, 1008, 256. [Google Scholar] [CrossRef] [PubMed]
- Billington, J.; Baron-Cohen, S.; Bor, D. Systemizing influences attentional processes during the navon task: An fmri study. Neuropsychologia 2008, 46, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Sahyoun, C.P.; Belliveau, J.W.; Soulières, I.; Schwartz, S.; Mody, M. Neuroimaging of the functional and structural networks underlying visuospatial vs. Linguistic reasoning in high-functioning autism. Neuropsychologia 2010, 48, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Molenberghs, P.; Cunnington, R.; Mattingley, J.B. Brain regions with mirror properties: A meta-analysis of 125 human fmri studies. Neurosci. Biobehav. Rev. 2012, 36, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranek, G.T.; David, F.J.; Poe, M.D.; Stone, W.L.; Watson, L.R. Sensory experiences questionnaire: Discriminating sensory features in young children with autism, developmental delays, and typical development. J. Child Psychol. Psychiatry 2006, 47, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J.M.; Volkow, N.D.; Newcorn, J.; Casey, B.; Moyzis, R.; Grandy, D.; Posner, M. Attention deficit hyperactivity disorder. Encycl. Cognit. Sci. 2006, 352, 165–173. [Google Scholar]
- Barkley, R.A. Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of adhd. Psychol. Bull. 1997, 121, 65. [Google Scholar] [CrossRef] [PubMed]
- Filipek, P.A.; Semrud-Clikeman, M.; Steingard, R.; Renshaw, P.F.; Kennedy, D.; Biederman, J. Volumetric mri analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 1997, 48, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Poissant, H.; Mendrek, A.; Senhadji, N. Neural correlates of forethought in adhd. J. Atten. Disord. 2014, 18, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, D.; Volkow, N.D. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol. Psychiatry 2012, 71, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.T.; Berkovic, S.F.; Brodie, M.J.; Buchhalter, J.; Cross, J.H.; van Emde Boas, W.; Engel, J.; French, J.; Glauser, T.A.; Mathern, G.W. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ilae commission on classification and terminology, 2005–2009. Epilepsia 2010, 51, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.C.; Lee, W.T. Benign epilepsy in children. J. Formos. Med. Assoc. 2011, 110, 134–144. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y.; Silveira, D.; Sarkisian, M.; Tandon, P.; Huang, L.T.; Stafstrom, C.; Holmes, G. Consequences of recurrent seizures during early brain development. Neuroscience 1999, 92, 1443–1454. [Google Scholar] [CrossRef]
- Freitag, C.M.; May, T.W.; Pfäfflin, M.; König, S.; Rating, D. Incidence of epilepsies and epileptic syndromes in children and adolescents: A population-based prospective study in germany. Epilepsia 2001, 42, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Meeren, H.; van Luijtelaar, G.; da Silva, F.L.; Coenen, A. Evolving concepts on the pathophysiology of absence seizures: The cortical focus theory. Arch. Neurol. 2005, 62, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Masterton, R.A.; Carney, P.W.; Abbott, D.F.; Jackson, G.D. Absence epilepsy subnetworks revealed by event-related independent components analysis of functional magnetic resonance imaging. Epilepsia 2013, 54, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.L.; Khan, R.L.; Gomes Filho, I.; Booij, L.; da Costa, J.C. Maturational changes of neonatal electroencephalogram: A comparison between intra uterine and extra uterine development. Clin. Neurophysiol. 2014, 125, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Statz, A.; Dumermuth, G.; Mieth, D.; Duc, G. Transient eeg patterns during sleep in healthy newborns. Neuropediatrics 1982, 13, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Ramantani, G. Neonatal epilepsy and underlying aetiology: To what extent do seizures and eeg abnormalities influence outcome? Epileptic Disord. 2013, 15, 365–375. [Google Scholar] [PubMed]
- Miller, S.; Weiss, J.; Barnwell, A.; Ferriero, D.; Latal-Hajnal, B.; Ferrer-Rogers, A.; Newton, N.; Partridge, J.; Glidden, D.; Vigneron, D. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology 2002, 58, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Holmes, G.L. Effects of seizures on brain development: Lessons from the laboratory. Pediatr. Neurol. 2005, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Glass, H.C.; Glidden, D.; Jeremy, R.J.; Barkovich, A.J.; Ferriero, D.M.; Miller, S.P. Clinical neonatal seizures are independently associated with outcome in infants at risk for hypoxic-ischemic brain injury. J. Pediatr. 2009, 155, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Löfhede, J.; Thordstein, M.; Löfgren, N.; Flisberg, A.; Rosa-Zurera, M.; Kjellmer, I.; Lindecrantz, K. Automatic classification of background eeg activity in healthy and sick neonates. J. Neural Eng. 2010, 7, 016007. [Google Scholar] [CrossRef] [PubMed]
- Greene, B.; Faul, S.; Marnane, W.; Lightbody, G.; Korotchikova, I.; Boylan, G. A comparison of quantitative eeg features for neonatal seizure detection. Clin. Neurophysiol. 2008, 119, 1248–1261. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, W.; Shao, X.; Wang, Z. Analysis of amplitude-integrated eeg in the newborn based on approximate entropy. IEEE Trans. Biomed. Eng. 2010, 57, 2459–2466. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis; The Royal Society: London, UK, 1998. [Google Scholar]
- Hu, M.; Liang, H. Adaptive multiscale entropy analysis of multivariate neural data. IEEE Trans. Biomed. Eng. 2012, 59, 12–15. [Google Scholar] [PubMed]
- Ahmed, M.; Rehman, N.; Looney, D.; Rutkowski, T.; Mandic, D. Dynamical complexity of human responses: A multivariate data-adaptive framework. Bull. Pol. Acad. Sci. Tech. Sci. 2012, 60, 433–445. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Mandic, D.P. Multivariate multiscale entropy: A tool for complexity analysis of multichannel data. Phys. Rev. E 2011, 84, 061918. [Google Scholar] [CrossRef] [PubMed]
Neurologic and Neuropsychiatric Disorders | Study | Subjects | Analysis Methods | Condition | Main Findings |
---|---|---|---|---|---|
ASD | Bosl et al. (2011) [9] | 46 HRA infants; 33 controls | Modified MSE | Resting | The pattern of development of complexity were different in HRA and control infants. The differences were greatest at ages 9–12 months. A model developed using machine learning algorithms showed 80% accuracy to identify HRA infants at 9 months old. |
Catarino et al. (2011) [10] | 15 adult diagnosed with ASD; 15 normal control | MSE Power analysis | EEG during face and chair detection task | Reduction of EEG complexity over temporal-parietal and occipital regions in ASD patients during face and chair matching task compared with typical controls was noted using MSE analysis. No differences in EEG power spectra were noted between groups. | |
Ghanbari et al. (2015) [11] | 26 ASD; 22 age-matched TD | MSE and synchronization likelihood on MEG signals | Resting, eye closed | Reduction of MEG complexity in frontal areas in alpha frequency band and in occipital areas in delta frequency band. Correlation was shown between complexity difference and symptom severity. | |
Okazaki et al. (2015) [12] | An adult with ASD receiving electroconvulsive therapy for catatonia symptom | MSE | Waking EEG, before, during and after electroconvulsive therapy | Decreased MSE in smaller scale over frontocentral area and increased MSE in larger scale over the occipital area during and after electroconvulsive therapy. The changes were accompanied by improvement of catatonia and correlated to change in serum brain-derived neurotrophic factor level. | |
Takahashi et al. (2016) [13] | 43 ASD; 72 TD | MSE | Video-watching | Alteration in typical age-related increase of MEG complexity in ASD. Enhanced MEG complexity in younger children with ASD. | |
Simon et al. (2017) [14] | 20 younger siblings of ASD | Composite MSE | Video-watching | Composit MSE at high frequency over temporooccipital region was negatively correlate to sensory hyporesponsiveness. | |
Bosl et al. (2017) [15] | 18 ASD; 26 CAE; 47 control | Modified MSE Recurrence quantification analysis | Resting | ASD showed higher modified MSE in the frontal, occipital, and left temporal areas. | |
Tian Liu et al. (2017) [16] | 20 ASD; 20 control | MSE | Observation task Imitation task | Lower MSE in ASD group was seen during obsrevation task at bilateral central, occipital, and right temporal areas. Lower MSE in ASD group were seen during imitation task at left central, parietal, occipital, and right temporal areas. | |
ADHD | Ke et al. (2014) [17] | 14 healthy adults | MSE | Visual attention, No attention Resting | Greater SamEn and MSE were correlated to the higher level of attention. Accuracy of support vector machine classfication using SamEn or MSE is better than using linear ratio, and is higher with small scale factor of MSE. |
Li et al. (2016) [18] | 13 ADHD; 13 control | MSE | During multi-source interference task | Increased complexity of EEG signals in delta and theta frequency band and decreased omplexity in alpha frequency bands in ADHD. | |
GTS | Weng et al. (2017) [19] | 10 children with GTS; 10 healthy controls | MSE | Resting, eye open | Reduction of complexity in the bilateral central, parietal, occipital, and left temporal regions. Change in the channel F3 was noted only at low frequency but not in high frequency spectra. |
Childhood absence epilepsy | Ouyang et al. (2013) [20] | 7 CAE | MPE MSE | Inter-ictal Pre-ictal Ictal | Siginificant decrease in EEG complexity during the pre-seizure period and further decrease in complexity during seizure period. EEG records from different state can be classified by linear discriminant analysis with multiscale PE or SamEn. |
Weng et al. (2015) [21] | 21 children with CAE | MSE | Inter-ictal Pre-ictal Ictal | Decreased complexity index in ictal than pre-ictal EEG. Greatest change was noted in the frontal and central regions. More significant difference in complexity index was noted using a higher sampling frequency of EEG recording. | |
Bosl et al. (2017) [15] | 18 ASD; 26 CAE; 47 control | Modified MSE Recurrence quantification analysis | Resting | CAE showed higher modified MSE in frontal, occipital, temporal, and parietal regions. | |
Neonatal seizure | Zhang et al. (2009) [22] | 168 newborns | SamEn | Active sleep Quiet sleep | Increase of SamEn during eurodevelopment from preterm to term (PMA 25–41 weeks). SamEn during active sleep decrease after term (PMA 42–52 weeks) was seen. SamEn fluctuation was greater in preterm infants and diminished during development to term. |
Lu et al. (2015) [23] | 9 neonatal seizures without later epilepsy; 14 neonatal seizures with later epilepsy; 9 controls | MSE | Light sleep | EEG complexity significantly decreased over channels C3, C4, and Cz in neonates with seizure and later epilepsy compared with control group. EEG complexity of neonates with seizure without later epilepsy was not different from controls. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Y.-J.; Chang, C.-F.; Shieh, J.-S.; Lee, W.-T. The Potential Application of Multiscale Entropy Analysis of Electroencephalography in Children with Neurological and Neuropsychiatric Disorders. Entropy 2017, 19, 428. https://doi.org/10.3390/e19080428
Chu Y-J, Chang C-F, Shieh J-S, Lee W-T. The Potential Application of Multiscale Entropy Analysis of Electroencephalography in Children with Neurological and Neuropsychiatric Disorders. Entropy. 2017; 19(8):428. https://doi.org/10.3390/e19080428
Chicago/Turabian StyleChu, Yen-Ju, Chi-Feng Chang, Jiann-Shing Shieh, and Wang-Tso Lee. 2017. "The Potential Application of Multiscale Entropy Analysis of Electroencephalography in Children with Neurological and Neuropsychiatric Disorders" Entropy 19, no. 8: 428. https://doi.org/10.3390/e19080428
APA StyleChu, Y. -J., Chang, C. -F., Shieh, J. -S., & Lee, W. -T. (2017). The Potential Application of Multiscale Entropy Analysis of Electroencephalography in Children with Neurological and Neuropsychiatric Disorders. Entropy, 19(8), 428. https://doi.org/10.3390/e19080428