Anomalous Advection-Dispersion Equations within General Fractional-Order Derivatives: Models and Series Solutions
Abstract
:1. Introduction
2. Mittag-Leffler Function and a New General Liouville–Caputo Fractional Derivative of Wiman Type
2.1. Mittag-Leffler Functions
2.2. A New General Liouville–Caputo Fractional-Order Derivative of Wiman Type
3. The Anomalous Advection-Dispersion Model with General Liouville–Caputo Fractional-Order Derivative of Wiman Type
3.1. The Model Background
3.2. The Series Solutions for General Fractional Advection-Dispersion Equation
4. Conclusions and Remarking Comments
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, X.J.; Machado, J.A.T. A new fractional operator of variable order: Application in the description of anomalous diffusion. Phys. A Stat. Mech. Appl. 2017, 481, 276–283. [Google Scholar] [CrossRef]
- Gao, F. General fractional calculus in nonsingular power-law kernel applied to model anomalous diffusion phenomena in heat-transfer problems. Therm. Sci. 2017, 21, S11–S18. [Google Scholar] [CrossRef]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.A.T.; Bates, J.H.T. The role of fractional calculus in modelling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Singh, M.K.; Chatterjee, A.; Singh, V.P. Solution of one-dimensional time fractional Advection dispersion equation by homotopy analysis method. J. Eng. Mech. 2017, 143, 1–16. [Google Scholar] [CrossRef]
- Garrard, R.M.; Zhang, Y.; Wei, S.; Sun, H.G.; Qian, J.Z. Can a Time Fractional-Derivative Model Capture Scale-Dependent Dispersion in Saturated Soils? Groundwater 2017, 55, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Toride, N.; Genuchten, M.T.V. Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns. Transp. Porous Media 1995, 18, 283–302. [Google Scholar] [CrossRef]
- Danckwerts, P.V. Continuous flow systems: Distribution of residence times. Chem. Eng. Sci. 1953, 2, 1–13. [Google Scholar] [CrossRef]
- Liang, X.; Liu, G.N.; Su, S.J. Applications of a novel integral transform to the convection-dispersion equations. Therm. Sci. 2017, 21, S233–S240. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Phanikumar, M.S.; Meerschaert, M.M. A novel numerical method for the time variable fractional order mobile–immobile advection—Dispersion model. Comput. Math. Appl. 2013, 66, 693–701. [Google Scholar] [CrossRef]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. Application of a fractional advection-dispersion equation. Water Resour. 2000, 36, 1403–1412. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 2008, 35, L17403. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F.; Moretti, D.; Pagnini, G.; Paradisi, P. Fractional diffusion: Probability distributions and random walk models. Phys. A Stat. Mech. Appl. 2002, 305, 106–112. [Google Scholar] [CrossRef]
- Vot, F.L.; Abad, E.; Yuste, S.B. Continuous-time random-walk model for anomalous diffusion in expanding media. Phys. Rev. E 2017, 96, 032117. [Google Scholar] [CrossRef] [PubMed]
- Magin, R.L.; Ingo, C. Entropy and information in a fractional order model of anomalous diffusion. IFAC Proc. Vol. 2012, 45, 428–433. [Google Scholar] [CrossRef]
- Povstenko, Y. Generalized boundary conditions for the time-fractional advection diffusion equation. Entropy 2015, 17, 4028–4039. [Google Scholar] [CrossRef]
- Chiogna, G.; Rolle, M. Entropy-based critical reaction time for mixing-controlled reactive transport. Water Resour. Res. 2017, 53, 7488–7498. [Google Scholar] [CrossRef]
- Giusti, A.; Colombaro, I. Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 138–143. [Google Scholar] [CrossRef]
- Yang, X.J. General fractional calculus operators containing the generalized Mittag-Leffler functions applied to anomalous relaxation. Therm. Sci. 2017, 21, S317–S326. [Google Scholar] [CrossRef]
- Yang, X.J. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Therm. Sci. 2017, 21, 1161–1171. [Google Scholar] [CrossRef]
- Yang, X.J. New general fractional-order rheological models with kernels of Mittag-Leffler functions. Rom. Rep. Phys. 2017, 69, 118. [Google Scholar]
- Yang, X.J.; Machado, J.A.; Baleanu, D. Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions. Rom. Rep. Phys. 2017, 69, 115. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: New York, NY, USA, 2014; pp. 7–16, 83,98. [Google Scholar]
- Mittag-Leffler, G.M. Sur la nouvelle function Eαx. C. R. Acad. Sci. 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Über den Fundamentalsatz in der Teorie der Funktionen Eαx. Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A Singular Integral Equation with a Generalized Mittag-Leffler Function in the Kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Liang, X.; Gao, F.; Su, S.J.; Wang, Z.; Yang, X.J. Classifications and duality relations for several integral transforms. J. Nonlinear Sci. Appl. 2017, 10, 6324–6332. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008; p. 95. [Google Scholar]
- Torres, L.; Yadav, O.P.; Khan, E. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Sci. Total Environ. 2016, 539, 478–493. [Google Scholar] [CrossRef] [PubMed]
Mittag-Leffler Functions with Power-Law Functions | Laplace Transforms |
---|---|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Yang, Y.-G.; Gao, F.; Yang, X.-J.; Xue, Y. Anomalous Advection-Dispersion Equations within General Fractional-Order Derivatives: Models and Series Solutions. Entropy 2018, 20, 78. https://doi.org/10.3390/e20010078
Liang X, Yang Y-G, Gao F, Yang X-J, Xue Y. Anomalous Advection-Dispersion Equations within General Fractional-Order Derivatives: Models and Series Solutions. Entropy. 2018; 20(1):78. https://doi.org/10.3390/e20010078
Chicago/Turabian StyleLiang, Xin, Yu-Gui Yang, Feng Gao, Xiao-Jun Yang, and Yi Xue. 2018. "Anomalous Advection-Dispersion Equations within General Fractional-Order Derivatives: Models and Series Solutions" Entropy 20, no. 1: 78. https://doi.org/10.3390/e20010078
APA StyleLiang, X., Yang, Y. -G., Gao, F., Yang, X. -J., & Xue, Y. (2018). Anomalous Advection-Dispersion Equations within General Fractional-Order Derivatives: Models and Series Solutions. Entropy, 20(1), 78. https://doi.org/10.3390/e20010078