A Newly Secure Solution to MIMOME OFDM-Based SWIPT Frameworks: A Two-Stage Stackelberg Game for a Multi-User Strategy
Abstract
:1. Introduction
1.1. Differences and Motivation (Regarding the Related Work)
1.2. Our Contribution
- Owing to the orthogonality between dually adjacent sub-carriers, the possibility of the energy receivers being passive Eavesdroppers (Eves) is zero. For example, in [12], an OFDM block was considered to jointly support the information and power. Inversely, in this paper, the coefficient to handle the power-information tradeoff is in relation to the number of sub-carriers. Instead, an active Eve is taken into account as well.
- We derive the mathematically closed-form solution as well.
- We extend and recast the solution into a sub-optimally closed-form solution using equal-power allocation.
- We extend the two-level Stackelberg to a stochastic one for the special case ICSI.
1.3. Notation & Organisation
2. System Description and Problem Formulation
2.1. System Description
- is a non-empty compact convex subset over the Euclidian Space,
- and also is quasi-concave over .
2.2. Our Two-Stage Stackelberg Game
Algorithm 1. Dogleg method [34,35]. Proposed algorithm for deriving and . |
Output: , |
1. Initialisation: Set the Knees and the Legs . |
2. Computation: Until convergence |
3. Repeat: Update the Knees and Legs; go to Step 2; . |
3. Results and Evaluation
Algorithm 2. Proposed Resource Scheduling Algorithm. |
Intput: |
Output: |
1. Initialisation: Set the given thresholds, . |
2. Computation: Until convergence |
Switch |
Case 1 Perfect CSI |
Solve Problem (or ). |
Case 2 Imperfect CSI |
Solve Problem . |
end |
If * is feasible for Problem, stop; store the resultant matrix. |
3. Iteration: Repeat |
Else if Otherwise, empty *; re-assign the possible candidates; update the subsets; go to Step 2; . |
End |
4. Conclusions
Conflicts of Interest
Appendix A
Proof of Proposition 1
Appendix B
Proof of Theorem 1
References
- Wang, X.; Liu, J.; Zhai, C.; Ma, S.; Wang, Q. Energy efficient relay networks with wireless power transfer from a multi-antenna base station. Trans. Emerg. Telecommun. Technol. 2016, 27, 533–543. [Google Scholar] [CrossRef]
- Liu, C.; Natarajan, B. Modeling and Analysis of Simultaneous Information and Energy Transfer in Internet of Things. Trans. Emerg. Telecommun. Technol. 2017, 28, e3177. [Google Scholar] [CrossRef]
- Zahedi, A.; Lari, M.; Albaaj, A.; Alabkhat, Q. Simultaneous energy harvesting and information processing considering multi-relay multi-antenna using maximum ratio transmission and antenna selection strategies. Trans. Emerg. Telecommun. Technol. 2017, 28, e3182. [Google Scholar] [CrossRef]
- Dong, A.; Zhang, H.; Shu, M.; Yuan, D. Simultaneous Wireless Information and Power Transfer for MIMO Interference Channel Networks Based on Interference Alignment. Entropy 2017, 9, 484. [Google Scholar] [CrossRef]
- Pan, G.; Tang, C. Outage Performance on Threshold AF and DF Relaying Schemes in Simultaneous Wireless Information and Power Transfer Systems. Int. J. Electron. Commun. 2017, 71, 175–180. [Google Scholar] [CrossRef]
- Huang, X.; Li, Q.; Zhang, Q.; Qin, J. Power allocation for secure OFDMA systems with wireless information and power transfer. Electron. Lett. 2014, 50, 229–230. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Zhang, R. Artificial Noise Aided Secrecy Information and Power Transfer in OFDMA Systems. IEEE Trans. Wirel. Commun. 2016, 15, 3085–3096. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y. Energy Harvesting for Physical-Layer Security in OFDMA Networks. IEEE Trans. Inf. Forensics Secur. 2016, 11, 154–162. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y. Power Allocation for Secure SWIPT Systems with Wireless-Powered Cooperative Jamming. IEEE Commun. Lett. 2017, 21, 1353–1356. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Zhang, R. Secrecy Wireless Information and Power Transfer in OFDMA Systems. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015. [Google Scholar]
- Zhang, M.; Liu, Y.; Feng, S. Energy Harvesting for Secure OFDMA Systems. In Proceedings of the 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP), Hefei, China, 23–25 October 2014. [Google Scholar]
- Shafie, A.E.; Tourki, K.; Al-Dhahir, N.L. An Artificial-Noise-Aided Hybrid TS/PS Scheme for OFDM-Based SWIPT Systems. IEEE Commun. Lett. 2017, 21, 632–635. [Google Scholar] [CrossRef]
- Tang, X.; Ren, P.; Wang, Y.; Du, Q.; Sun, L. Securing Wireless Transmission against Reactive Jamming: A Stackelberg Game Framework. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015. [Google Scholar]
- Al-Talabani, A.; Nallanathan, A.; Nguyen, H.X. Enhancing Secrecy Rate in Cognitive Radio via Game Theory. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015. [Google Scholar]
- Talabani, A.; Deng, Y.; Nallanathan, A.; Nguyen, H.X. Enhancing Secrecy Rate in Cognitive Radio Networks via Stackelberg Game. IEEE Trans. Commun. 2016, 64, 4764–4775. [Google Scholar] [CrossRef]
- Talabani, A.; Deng, Y.; Nallanathan, A.; Nguyen, H.X. Enhancing Secrecy Rate in Cognitive Radio Networks via Multilevel Stackelberg Game. IEEE Commun. Lett. 2016, 20, 1112–1115. [Google Scholar] [CrossRef]
- Abdalzaher, M.S.; Seddik, K.; Muta, O. Using Stackelberg game to enhance cognitive radio sensor networks security. IET Commun. 2017, 11, 1503–1511. [Google Scholar] [CrossRef]
- Liu, C.; Xing, S.; Shen, L. Dynamic hybrid-access control in multi-user and multi-femtocell networks via Stackelberg game competition. IET Commun. 2016, 10, 862–872. [Google Scholar] [CrossRef]
- Sarma, S.; Kandhway, K.; Kuri, J. Robust Energy Harvesting Based on a Stackelberg Game. IEEE Wirel. Commun. Lett. 2016, 5, 336–339. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, W.; Yang, F. Balancing Delay and Energy Efficiency in Energy Harvesting Cognitive Radio Networks: A Stochastic Stackelberg Game Approach. IEEE Trans. Cognit. Commun. Netw. 2017, 3, 201–216. [Google Scholar] [CrossRef]
- Xiong, K.; Fan, P.; Zhang, C.; Letaief, K.B. Wireless Information and Energy Transfer for Two-Hop Non-Regenerative MIMO-OFDM Relay Networks. IEEE J. Sel. Areas Commun. 2015, 33, 1595–1611. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhai, C. Wireless power transfer based multi-pair two-way relaying with massive antennas. IEEE Trans. Wirel. Commun. 2017, 16, 7672–7684. [Google Scholar] [CrossRef]
- Wang, X.; Zhai, C. Simultaneous wireless information and power transfer for multi-user massive antenna-array systems. IEEE Trans. Commun. 2017, 65, 4039–4048. [Google Scholar] [CrossRef]
- Khandaker, M.R.A.; Wong, K.-K.; Zhang, Y.; Zheng, Z. Probabilistically Robust SWIPT for Secrecy MISOME Systems. IEEE Trans. Inf. Forensics Secur. 2017, 12, 211–226. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, R.; Chua, K.-C. Secrecy Wireless Information and Power Transfer with MISO Beamforming. IEEE Trans. Signal Process. 2014, 62, 1850–1863. [Google Scholar] [CrossRef]
- He, B.; Yang, N.; Yan, S.; Zhou, X. Regularized Channel Inversion for Simultaneous Confidential Broadcasting and Power Transfer: A Large System Analysis. IEEE J. Sel. Top. Signal Process. 2016, 10, 1404–1416. [Google Scholar] [CrossRef]
- Zhu, Z.; Chu, Z.; Wang, N.; Huang, S.; Wang, Z.; Lee, I. Beamforming and Power Splitting Designs for AN-Aided Secure Multi-User MIMO SWIPT Systems. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2861–2874. [Google Scholar] [CrossRef]
- Zhou, F.; Li, Z.; Cheng, J.; Li, Q.; Si, J. Robust AN-Aided Beamforming and Power Splitting Design for Secure MISO Cognitive Radio with SWIPT. IEEE Trans. Wirel. Commun. 2017, 16, 2450–2464. [Google Scholar] [CrossRef]
- Osborne, M.J.; Rubenstein, A. A Course in Game Theory; MIT Press: Cambridge, UK, 1994. [Google Scholar]
- Haddad, M.; Hayely, Y.; Habachi, O. Spectrum Coordination in Energy Efficient Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2015, 64, 2112–2122. [Google Scholar] [CrossRef]
- Rhee, W.; Cioffi, J.M. Increase in capacity of multiuser OFDM system using dynamic subchannel allocation. In Proceedings of the 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No. 00CH37026), Tokyo, Japan, 15–18 May 2000; pp. 1085–1089. [Google Scholar]
- Le, T.A.; Vien, Q.T.; Nguyen, H.X.; Kwan Ng, D.W.; Schober, R. Robust Chance-Constrained Optimization for Power-Efficient and Secure SWIPT Systems. IEEE Trans. Green Commun. Netw. 2017, 1, 333–346. [Google Scholar] [CrossRef]
- Zamanipour, M. Probabilistic-based secrecy rate maximisation for MIMOME wiretap channels: Towards novel convexification procedures. Trans. Emerg. Telecommun. Technol. 2017, 28, e3154. [Google Scholar] [CrossRef]
- Ding, H.; Wan, G.; Zhou, Y.; Tang, J.; Zhou, Z. Nonlinearity analysis based algorithm for indentifying machine settings in the tooth flank topography correction for hypoid gears. Mech. Mach. Theory 2017, 113, 1–21. [Google Scholar] [CrossRef]
- Bellavia, S.; Macconi, M.; Pieraccini, S. Constrained dogleg methods for nonlinear systems with simple bounds. Comput. Optim. Appl. 2012, 53, 771–794. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming; CVX Research Inc.: Austin, TX, USA, 2009. [Google Scholar]
- Fang, B.; Zhong, W.; Jin, S.; Qian, Z.; Shao, W. Game-Theoretic Precoding for SWIPT in the DF-Based MIMO Relay Networks. IEEE Trans. Veh. Technol. 2016, 65, 6940–6948. [Google Scholar] [CrossRef]
- Bannour, A.; Sacchi, C.; Sun, Y. MIMO-OFDM Based Energy Harvesting Cooperative Communications Using Coalitional Game Algorithm. IEEE Trans. Veh. Technol. 2017, 66, 11166–11179. [Google Scholar] [CrossRef]
- Adian, M.G.; Aghaeinia, H. Low complexity resource allocation in MIMO-OFDM-based cooperative cognitive radio networks. Trans. Emerg. Telecommun. Technol. 2016, 27, 92–100. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Wang, A.; Cai, Y.; Yang, W.; Hou, Z. A Stackelberg Security Game with Cooperative Jamming over a Multiuser OFDMA Network. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 7–10 April 2013. [Google Scholar]
- Hjørungnes, A.; Gesbert, D. Complex-Valued Matrix Derivatives: With Applications in Signal Processing and Communications; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Petersen, K.; Pedersen, M. The Matrix Cookbook; Technical University of Denmark: Kongens Lyngby, Denmark, 2012. [Google Scholar]
Notation | Definition | Notation | Definition |
---|---|---|---|
Matrix | Logarithm | ||
Vector | Trace of Matrix | ||
a | Scalar | Maximum Value | |
Identity Matrix | Supremum | ||
0 | All-zero Matrix | Vectorisation | |
Estimation operation | Euclidean Norm | ||
Hermitian | Equal by Definition | ||
Determinant | Optimum Value |
Parameter | Value |
---|---|
The size of MIMOs | 4 (i.e., 4 × 4) |
Transmit power threshold | regime |
Convex interface package | CVX [36] |
Number of sub-carriers | 1024 |
Number of legitimate users (k) | 25 |
Number of Randomly generated channel realisations | 300 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamanipour, M. A Newly Secure Solution to MIMOME OFDM-Based SWIPT Frameworks: A Two-Stage Stackelberg Game for a Multi-User Strategy. Entropy 2018, 20, 79. https://doi.org/10.3390/e20010079
Zamanipour M. A Newly Secure Solution to MIMOME OFDM-Based SWIPT Frameworks: A Two-Stage Stackelberg Game for a Multi-User Strategy. Entropy. 2018; 20(1):79. https://doi.org/10.3390/e20010079
Chicago/Turabian StyleZamanipour, Makan. 2018. "A Newly Secure Solution to MIMOME OFDM-Based SWIPT Frameworks: A Two-Stage Stackelberg Game for a Multi-User Strategy" Entropy 20, no. 1: 79. https://doi.org/10.3390/e20010079
APA StyleZamanipour, M. (2018). A Newly Secure Solution to MIMOME OFDM-Based SWIPT Frameworks: A Two-Stage Stackelberg Game for a Multi-User Strategy. Entropy, 20(1), 79. https://doi.org/10.3390/e20010079