Multilevel Diversity Coding with Secure Regeneration: Separate Coding Achieves the MBR Point
Abstract
:1. Introduction
2. The MDC-SR Problem
- for each , a message-encoding function ;
- for each , a message-decoding function ;
- for each , , and , a repair-encoding function ;
- for each and , a repair-decoding function .
- (rate normalization)
- (message recovery)
- (node regeneration)
- (repair secrecy)
- (1)
- the achievable normalized storage-capacity repair-bandwidth trade-off region of the MDC-R problem is simply for any given normalized message-rate tuple ,
- (2)
- the achievable normalized storage-capacity repair-bandwidth trade-off region of the SRC problem is simply ,
- (3)
- the achievable normalized storage-capacity repair-bandwidth trade-off region of the RC problem is simply or, equivalently, .
3. Main Results
4. Proof of the Main Results
- (1)
- Total number of nodes. To prove the outer bounds (9) and (10), let us first note that these bounds are independent of the total number of storage nodes n in the system. Therefore, in our proof, we only need to consider the cases where —for the cases where , since any subsystem consisting of out of the total n storage nodes must give rise to a MDC-SR problem. Therefore, these outer bounds must apply as well. When , any repair group of size d is uniquely determined by the node j to be repaired, i.e., , and hence can be dropped from the notation without causing any confusion.
- (2)
- (3)
- Key collections of random variables. Focusing on the symmetrical codes, the following collections of random variables play a key role in our proof:
4.1. Technical Lemmas
4.2. The Proof
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Proof of the Exchange Lemma
- for any ,
- ,
- .
References
- Singleton, R.C. Maximum distance q-nary codes. IEEE Trans. Inf. Theory 1964, 10, 116–118. [Google Scholar] [CrossRef]
- Roche, J.R. Distributed Information Storage. Ph.D. Dissertation, Stanford University, Stanford, CA, USA, 1992. [Google Scholar]
- Roche, J.R.; Yeung, R.W.; Hau, K.P. Symmetrical multilevel diversity coding. IEEE Trans. Inf. Theory 1997, 43, 1059–1064. [Google Scholar] [CrossRef]
- Yeung, R.W.; Zhang, Z. On symmetrical multilevel diversity coding. IEEE Trans. Inf. Theory 1999, 45, 609–621. [Google Scholar] [CrossRef]
- Mohajer, S.; Tian, C.; Diggavi, S.N. Asymmetric multilevel diversity coding and asymmetric Gaussian multiple descriptions. IEEE Trans. Inf. Theory 2010, 56, 4367–4387. [Google Scholar] [CrossRef]
- Jiang, J.; Marukala, N.; Liu, T. Symmetrical multilevel diversity coding and subset entropy inequalities. IEEE Trans. Inf. Theory 2014, 60, 84–103. [Google Scholar] [CrossRef]
- Dimakis, A.G.; Godfrey, P.B.; Wu, Y.; Wainwright, M.; Ramchandran, K. Network coding for distributed storage systems. IEEE Trans. Inf. Theory 2010, 56, 4539–4551. [Google Scholar] [CrossRef]
- Rashmi, K.V.; Shah, N.B.; Kumar, P.V. Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction. IEEE Trans. Inf. Theory 2011, 57, 5227–5239. [Google Scholar] [CrossRef]
- Cadambe, V.R.; Jafar, S.A.; Maleki, H.; Ramchandran, K.; Suh, C. Asymptotic interference alignment for optimal repair of MDS codes in distributed storage. IEEE Trans. Inf. Theory 2013, 59, 2974–2987. [Google Scholar] [CrossRef]
- Tian, C. Characterizing the rate region of the (4,3,3) exact-repair regenerating codes. IEEE J. Sel. Areas Commun. 2014, 32, 967–975. [Google Scholar] [CrossRef]
- Goparaju, S.; El Rouayheb, S.; Calderbank, R. New codes and inner bounds for exact repair in distributed storage systems. In Proceedings of the 2014 IEEE International Symposium on Information Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014; pp. 1036–1040. [Google Scholar]
- Duursma, I.M. Outer bounds for exact repair codes. Arxiv, 2014; arXiv:1406.4852. [Google Scholar]
- Prakash, N.; Krishnan, M.N. The storage-repair-bandwidth trade-off of exact repair linear regenerating codes for the case d = k = n − 1. In Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 14–19 June 2015; pp. 859–863. [Google Scholar]
- Elyasi, M.; Mohajer, S.; Tandon, R. Linear exact repair rate region of (k + 1,k,k) distributed storage systems: A new approach. In Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 14–19 June 2015; pp. 2061–2065. [Google Scholar]
- Tian, C.; Sasidharan, B.; Aggarwal, V.; Vaishampayan, V.A.; Kumar, P.V. Layered exact-repair regenerating codes via embedded error correction and block designs. IEEE Trans. Inf. Theory 2015, 61, 1933–1947. [Google Scholar] [CrossRef]
- Ye, M.; Barg, A. Explicit constructions of high-rate MDS array codes with optimal repair bandwidth. IEEE Trans. Inf. Theory 2017, 63, 2001–2014. [Google Scholar] [CrossRef]
- Kralevska, K.; Gligoroski, D. An Explicit Construction of Systematic MDS Codes with Small Sub-packetization for All-Node Repair. Arxiv, 2018; arXiv:1806.03103. [Google Scholar]
- Goparaju, S.; Fazeli, A.; Vardy, A. Minimum storage regenerating codes for all parameters. IEEE Trans. Inf. Theory 2017, 63, 6318–6328. [Google Scholar] [CrossRef]
- Kralevska, K.; Gligoroski, D.; Jensen, R.E.; Overby, H. Hashtag erasure codes: From theory to practice. IEEE Trans. Big Data 2017, 1. [Google Scholar] [CrossRef]
- Kralevska, K.; Gligoroski, D.; Øverby, H. General Sub-packetized Access Optimal Regenerating Codes. IEEE Commun. Lett. 2016, 20, 1281–1284. [Google Scholar] [CrossRef]
- Tian, C.; Liu, T. Multilevel diversity coding with regeneration. IEEE Trans. Inf. Theory 2016, 62, 4833–4847. [Google Scholar] [CrossRef]
- Shao, S.; Liu, T.; Tian, C. Multilevel diversity coding with regeneration: Separate coding achieves the MBR point. In Proceedings of the 2016 Annual Conference on Information Science and Systems (CISS), Princeton, NJ, USA, 16–18 March 2016; pp. 602–607. [Google Scholar]
- Pawar, S.; El Rouayheb, S.; Ramchandran, K. On secure distributed data storage under repair dynamics. In Proceedings of the 2010 IEEE International Symposium on Information Theory (ISIT), Austin, TX, USA, 13–18 June 2010; pp. 2543–2547. [Google Scholar]
- Pawar, S.; El Rouayheb, S.; Ramchandran, K. Securing dynamic distributed storage systems against eavesdropping and adversarial Attacks. IEEE Trans. Inf. Theory 2011, 57, 6734–6753. [Google Scholar] [CrossRef]
- Shah, N.B.; Rashmi, K.V.; Kumar, P.V. Information-theoretically secure regenerating codes for distributed storage. In Proceedings of the 2011 IEEE Global Telecommunications Conference (GLOBECOM), Kathmandu, Nepal, 5–9 December 2011; pp. 1–5. [Google Scholar]
- Goparaju, S.; El Rouayheb, S.; Calderbank, R.; Poor, H.V. Data secrecy in distributed storage systems under exact repair. In Proceedings of the 2013 International Symposium on Network Coding (NetCod), Calgary, AB, Canada, 7–9 June 2013; pp. 1–6. [Google Scholar]
- Rawat, A.S.; Koyluoglu, O.O.; Silberstein, N.; Vishwanath, S. Optimal locally repairable and secure codes for distributed storage systems. IEEE Trans. Inf. Theory 2014, 60, 212–236. [Google Scholar] [CrossRef]
- Tandon, R.; Amuru, S.; Clancy, T.C.; Buehrer, R.M. Towards optimal secure distributed storage systems with exact repair. IEEE Trans. Inf. Theory 2016, 62, 3477–3492. [Google Scholar] [CrossRef]
- Ye, F.; Shum, K.W.; Yeung, R.W. The rate region of secure exact-repair regenerating codes for 5 nodes. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 1406–1410. [Google Scholar]
- Shao, S.; Liu, T.; Tian, C.; Shen, C. On the trade-off region of secure exact-repair regenerating codes. IEEE Trans. Inf. Theory 2017, 63, 7253–7266. [Google Scholar] [CrossRef]
- Balasubramanian, A.; Ly, H.D.; Li, S.; Liu, T.; Miller, S.L. Secure symmetrical multilevel diversity coding. IEEE Trans. Inf. Theory 2013, 59, 3572–3581. [Google Scholar] [CrossRef]
- Han, T.S. Nonnegative entropy measures of multivariate symmetric correlations. Inf. Control 1978, 36, 133–156. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, S.; Liu, T.; Tian, C.; Shen, C. Multilevel Diversity Coding with Secure Regeneration: Separate Coding Achieves the MBR Point. Entropy 2018, 20, 751. https://doi.org/10.3390/e20100751
Shao S, Liu T, Tian C, Shen C. Multilevel Diversity Coding with Secure Regeneration: Separate Coding Achieves the MBR Point. Entropy. 2018; 20(10):751. https://doi.org/10.3390/e20100751
Chicago/Turabian StyleShao, Shuo, Tie Liu, Chao Tian, and Cong Shen. 2018. "Multilevel Diversity Coding with Secure Regeneration: Separate Coding Achieves the MBR Point" Entropy 20, no. 10: 751. https://doi.org/10.3390/e20100751
APA StyleShao, S., Liu, T., Tian, C., & Shen, C. (2018). Multilevel Diversity Coding with Secure Regeneration: Separate Coding Achieves the MBR Point. Entropy, 20(10), 751. https://doi.org/10.3390/e20100751