Emergence of Non-Fourier Hierarchies
Abstract
:1. Introduction
2. Size Dependence
3. Seeming Non-Fourier Heat Conduction Induced by Elasticity Coupled via Thermal Expansion
The Basic Equations
The Derivation
4. Pseudo-Temperature Approach
5. Outlook and Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fourier, J. Theorie Analytique de la Chaleur; Firmin Didot: Paris, France, 1822. [Google Scholar]
- Tisza, L. Transport phenomena in Helium II. Nature 1938, 141, 913. [Google Scholar] [CrossRef]
- Joseph, D.D.; Preziosi, L. Heat waves. Rev. Mod. Phys. 1989, 61, 41. [Google Scholar] [CrossRef]
- Joseph, D.D.; Preziosi, L. Addendum to the paper on heat waves. Rev. Mod. Phys. 1990, 62, 375–391. [Google Scholar] [CrossRef]
- Chen, G. Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 2001, 86, 2297–2300. [Google Scholar] [CrossRef] [PubMed]
- Ván, P.; Fülöp, T. Universality in Heat Conduction Theory—Weakly Nonlocal Thermodynamics. Annalen der Physik (Berlin) 2012, 524, 470–478. [Google Scholar] [CrossRef]
- Kovács, R.; Ván, P. Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 2015, 83, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, C.C.; Bertman, B.; Fairbank, H.A.; Guyer, R.A. Second sound in solid Helium. Phys. Rev. Lett. 1966, 16, 789–791. [Google Scholar] [CrossRef]
- Jackson, H.E.; Walker, C.T. Thermal conductivity, second sound and phonon-phonon interactions in NaF. Phys. Rev. B 1971, 3, 1428–1439. [Google Scholar] [CrossRef]
- Peshkov, V. Second sound in Helium II. J. Phys. (Moscow) 1944, 8, 381. [Google Scholar]
- McNelly, T.F. Second Sound and Anharmonic Processes in Isotopically Pure Alkali-Halides. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1974. [Google Scholar]
- Dreyer, W.; Struchtrup, H. Heat pulse experiments revisited. Contin. Mech. Thermodyn. 1993, 5, 3–50. [Google Scholar] [CrossRef]
- Müller, I.; Ruggeri, T. Rational Extended Thermodynamics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Frischmuth, K.; Cimmelli, V.A. Numerical reconstruction of heat pulse experiments. Int. J. Eng. Sci. 1995, 33, 209–215. [Google Scholar] [CrossRef]
- Kovács, R.; Ván, P. Models of Ballistic Propagation of Heat at Low Temperatures. Int. J. Thermophys. 2016, 37, 95. [Google Scholar] [CrossRef]
- Kovács, R.; Ván, P. Second sound and ballistic heat conduction: NaF experiments revisited. Int. J. Heat Mass Transf. 2018, 117, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Bargmann, S.; Steinmann, P. Finite element approaches to non-classical heat conduction in solids. Comput. Model. Eng. Sci. 2005, 9, 133–150. [Google Scholar]
- Herwig, H.; Beckert, K. Fourier versus non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Trans.-Am. Soc. Mech. Eng. J. Heat Transf. 2000, 122, 363–364. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, W. Modified ballistic–diffusive equations for transient non-continuum heat conduction. Int. J. Heat Mass Transf. 2015, 83, 51–63. [Google Scholar] [CrossRef]
- Zhukovsky, K.V.; Srivastava, H.M. Analytical solutions for heat diffusion beyond Fourier law. Appl. Math. Comput. 2017, 293, 423–437. [Google Scholar] [CrossRef]
- Mitra, K.; Kumar, S.; Vedevarz, A.; Moallemi, M.K. Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 1995, 117, 568–573. [Google Scholar] [CrossRef]
- Roetzel, W.; Putra, N.; Das, S.K. Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int. J. Therm. Sci. 2003, 42, 541–552. [Google Scholar] [CrossRef]
- Cattaneo, C. Sur une forme de lequation de la chaleur eliminant le paradoxe dune propagation instantanee. C. R. Hebd. Seances Acad. Sci. 1958, 247, 431–433. [Google Scholar]
- Vernotte, P. Les paradoxes de la théorie continue de léquation de la chaleur. C. R. Hebd. Seances Acad. Sci. 1958, 246, 3154–3155. [Google Scholar]
- Tisza, L. The theory of liquid Helium. Phys. Rev. 1947, 72, 838–877. [Google Scholar] [CrossRef]
- Landau, L. On the theory of superfluidity of Helium II. J. Phys. 1947, 11, 91–92. [Google Scholar]
- Guyer, R.A.; Krumhansl, J.A. Solution of the Linearized Phonon Boltzmann Equation. Phys. Rev. 1966, 148, 766–778. [Google Scholar] [CrossRef]
- Guyer, R.A.; Krumhansl, J.A. Thermal Conductivity, Second Sound and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals. Phys. Rev. 1966, 148, 778–788. [Google Scholar] [CrossRef]
- Ván, P. Weakly Nonlocal Irreversible Thermodynamics—The Guyer-Krumhansl and the Cahn-Hilliard Equations. Phys. Lett. A 2001, 290, 88–92. [Google Scholar] [CrossRef]
- Zhukovsky, K.V. Exact solution of Guyer–Krumhansl type heat equation by operational method. Int. J. Heat Mass Transf. 2016, 96, 132–144. [Google Scholar] [CrossRef]
- Zhukovsky, K.V. Operational Approach and Solutions of Hyperbolic Heat Conduction Equations. Axioms 2016, 5, 28. [Google Scholar] [CrossRef]
- Kovács, R. Analytic solution of Guyer-Krumhansl equation for laser flash experiments. Int. J. Heat Mass Transf. 2018, 127, 631–636. [Google Scholar] [CrossRef]
- Tzou, D.Y. Macro- to Micro-Scale Heat Transfer: The Lagging Behavior; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Sellitto, A.; Cimmelli, V.A.; Jou, D. Nonequilibrium Thermodynamics and Heat Transport at Nanoscale. In Mesoscopic Theories of Heat Transport in Nanosystems; Springer: Cham, Switzerland, 2016; pp. 1–30. [Google Scholar]
- Rogolino, P.; Kovács, R.; Ván, P.; Cimmelli, V.A. Generalized heat-transport equations: Parabolic and hyperbolic models. Contin. Mech. Thermodyn. 2018, 1–14. [Google Scholar] [CrossRef]
- Fabrizio, M.; Lazzari, B.; Tibullo, V. Stability and Thermodynamic Restrictions for a Dual-Phase-Lag Thermal Model. J. Non-Equilib. Thermodyn. 2017, 42, 243–252. [Google Scholar] [CrossRef]
- Rukolaine, S.A. Unphysical effects of the dual-phase-lag model of heat conduction: Higher-order approximations. Int. J. Therm. Sci. 2017, 113, 83–88. [Google Scholar] [CrossRef]
- Kovács, R.; Ván, P. Thermodynamical consistency of the Dual Phase Lag heat conduction equation. Contin. Mech. Thermodyn. 2017, 1–8. [Google Scholar] [CrossRef]
- Both, S.; Czél, B.; Fülöp, T.; Gróf, G.; Gyenis, Á.; Kovács, R.; Ván, P.; Verhás, J. Deviation from the Fourier law in room-temperature heat pulse experiments. J. Non-Equilib. Thermodyn. 2016, 41, 41–48. [Google Scholar] [CrossRef]
- Ván, P.; Berezovski, A.; Fülöp, T.; Gróf, G.; Kovács, R.; Lovas, Á.; Verhás, J. Guyer-Krumhansl-type heat conduction at room temperature. EPL 2017, 118, 50005. [Google Scholar] [CrossRef]
- Asszonyi, C.; Csatár, A.; Fülöp, T. Elastic, thermal expansion, plastic and rheological processes—theory and experiment. Period. Polytech. Civ. Eng. 2016, 60, 591–601. [Google Scholar] [CrossRef]
- Fülöp, T.; Ván, P. Kinematic quantities of finite elastic and plastic deformation. Math. Methods Appl. Sci. 2012, 35, 1825–1841. [Google Scholar] [CrossRef] [Green Version]
- Fülöp, T. Objective thermomechanics. arXiv, 2015; arXiv:1510.08038. [Google Scholar]
- Ván, P.; Kovács, R.; Fülöp, T. Thermodynamics hierarchies of evolution equations. Proc. Est. Acad. Sci. 2015, 64, 389–395. [Google Scholar] [CrossRef]
- Jou, D.; Carlomagno, I.; Cimmelli, V.A. A thermodynamic model for heat transport and thermal wave propagation in graded systems. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 73, 242–249. [Google Scholar] [CrossRef]
- Jou, D.; Cimmelli, V.A. Constitutive equations for heat conduction in nanosystems and non-equilibrium processes: An overview. Commun. Appl. Ind. Math. 2016, 7, 196–222. [Google Scholar]
- Parker, W.J.; Jenkins, R.J.; Butler, C.P.; Abbott, G.L. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 1961, 32, 1679–1684. [Google Scholar] [CrossRef]
- James, H.M. Some extensions of the flash method of measuring thermal diffusivity. J. Appl. Phys. 1980, 51, 4666–4672. [Google Scholar] [CrossRef]
Thickness L, | Fourier Thermal Diffusivity , | Guyer-Krumhansl Thermal Diffusivity , | Relaxation Time , | Dissipation Parameter , |
---|---|---|---|---|
Thickness L, | Ratio of Parameters |
---|---|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fülöp, T.; Kovács, R.; Lovas, Á.; Rieth, Á.; Fodor, T.; Szücs, M.; Ván, P.; Gróf, G. Emergence of Non-Fourier Hierarchies. Entropy 2018, 20, 832. https://doi.org/10.3390/e20110832
Fülöp T, Kovács R, Lovas Á, Rieth Á, Fodor T, Szücs M, Ván P, Gróf G. Emergence of Non-Fourier Hierarchies. Entropy. 2018; 20(11):832. https://doi.org/10.3390/e20110832
Chicago/Turabian StyleFülöp, Tamás, Róbert Kovács, Ádám Lovas, Ágnes Rieth, Tamás Fodor, Mátyás Szücs, Péter Ván, and Gyula Gróf. 2018. "Emergence of Non-Fourier Hierarchies" Entropy 20, no. 11: 832. https://doi.org/10.3390/e20110832
APA StyleFülöp, T., Kovács, R., Lovas, Á., Rieth, Á., Fodor, T., Szücs, M., Ván, P., & Gróf, G. (2018). Emergence of Non-Fourier Hierarchies. Entropy, 20(11), 832. https://doi.org/10.3390/e20110832