Ultrasound Entropy Imaging of Nonalcoholic Fatty Liver Disease: Association with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometric Indices and Biochemical Analyses
2.3. Diagnosis of MetS
2.4. Ultrasound Examinations for NAFLD Evaluation
2.5. Quantitative Analysis using ASQ and Entropy Imaging
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Participants
3.2. Characteristics of Participants in Different Tertiles
3.3. The Risks of Metabolic Syndrome in Different Tertiles for the FD Ratio and the Entropy Value
4. Discussion
4.1. Significance of This Study
4.2. Effects of NAFLD on FD Ratio and Entropy
4.3. Insulin Resistance: Bidirectional Link between MetS and NAFLD
4.4. Superiority of Entropy in the Assessment of NAFLD and MetS
4.5. Comparison with Related Studies
4.6. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, A.S.; Keeffe, E.B. Nonalcoholic fatty liver disease. Rev. Gastroenterol. Disord. 2002, 2, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Abraham, M.; Unalp, A.; Wilson, L.; Lavine, J.; Doo, E.; Bass, N.M. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 2012, 56, 943–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezvani, M.; Shaaban, A.M. Patterns of fatty liver disease. Curr. Radiol. Rep. 2016, 4, 26. [Google Scholar] [CrossRef]
- Beeman, S.C.; Garbow, J.R. Fatty Liver Disease. In Imaging and Metabolism; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 223–241. [Google Scholar]
- Bravo, A.A.; Sheth, S.G.; Chopra, S. Liver biopsy. N. Engl. J. Med. 2001, 344, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Sumida, Y.; Nakajima, A.; Itoh, Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 2014, 20, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Nalbantoglu, I.L.; Brunt, E.M. Role of liver biopsy in nonalcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 9026–9037. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Z.; Holalkere, N.S.; Kambadakone, R.A.; Mari, M.K.; Hahn, P.F.; Sahani, D.V. Imaging-based quantification of hepatic fat: Methods and clinical applications. Radiographics 2009, 29, 1253–1280. [Google Scholar] [CrossRef] [PubMed]
- Saadeh, S.; Younossi, Z.M.; Remer, E.M.; Gramlich, T.; Ong, J.P.; Hurley, M. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002, 123, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Park, S.H.; Kim, H.J.; Kim, S.Y.; Kim, M.Y.; Kim, D.Y. Non-inva¬sive assessment of hepatic steatosis: Prospective comparison of the accuracy of imaging examinations. J. Hepatol. 2010, 52, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.; Gavish, E.; Gottlieb, P.; Katsnelson, L. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. AJR 2007, 189, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, M.; Sentürk, S.; Cetin, B.; Bayrak, A.H.; Bilek, S.U. Sonographic assessment of fatty liver: Intraobserver and interobserver variability. Int. J. Clin. Exp. Med. 2014, 7, 5453–5460. [Google Scholar] [PubMed]
- Mamou, J.; Oelze, M.L. Quantitative Ultrasound in Soft Tissues; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2013. [Google Scholar]
- Tsui, P.H.; Zhou, Z.; Lin, Y.H.; Hung, C.M.; Chung, S.J.; Wan, Y.L. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues. PLoS ONE 2017, 12, e0181789. [Google Scholar] [CrossRef] [PubMed]
- Destrempes, F.; Cloutier, G. A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope. Ultrasound Med. Biol. 2010, 36, 1037–1051. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.Y.; Yang, K.C.; Lee, M.J.; Huang, K.C.; Chen, J.D.; Yeh, C.K. Multifeature analysis of an ultrasound quantitative diagnostic index for classifying nonalcoholic fatty liver disease. Sci. Rep. 2016, 6, 35083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.L.; Tai, D.I.; Ma, H.Y.; Chiang, B.H.; Chen, C.K.; Tsui, P.H. Effects of fatty infiltration in human livers on the backscattered statistics of ultrasound imaging. Proc. Inst. Mech. Eng. H 2015, 229, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhou, Z.; Chang, N.F.; Wan, Y.L.; Tsui, P.H. Ultrasound parametric imaging of hepatic steatosis using the homodyned-K distribution: An animal study. Ultrasonics 2018, 87, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H.; Kumada, T.; Kamiyama, N.; Shiraki, K.; Takase, K.; Yamaguchi, T.; Hachiya, H. B-mode ultrasound with algorithm based on statistical analysis of signals: Evaluation of liver fibrosis in patients with chronic hepatitis C. Am. J. Roentgenol. 2009, 193, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, H.; Kakisaka, K.; Kamiyama, N.; Oikawa, T.; Onodera, M.; Sawara, K.; Oikawa, K.; Endo, R.; Takikawa, Y.; Suzuki, K.; et al. Non-invasive determination of hepatic steatosis by acoustic structure quantification from ultrasound echo amplitude. World J. Gastroenterol. 2012, 18, 3889–3895. [Google Scholar] [CrossRef] [PubMed]
- Son, J.Y.; Lee, J.Y.; Yi, N.J.; Lee, K.W.; Suh, K.S.; Kim, K.G.; Lee, J.M.; Han, J.K.; Choi, B.I. Hepatic steatosis: Assessment with acoustic structure quantification of US imaging. Radiology 2016, 278, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Karlas, T.; Berger, J.; Garnov, N.; Lindner, F.; Busse, H.; Linder, N.; Schaudinn, A.; Relke, B.; Chakaroun, R.; Tröltzsch, M.; et al. Estimating steatosis and fibrosis: Comparison of acoustic structure quantification with established techniques. World J. Gastroenterol. 2015, 21, 4894–4902. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.; Kaltenbach, T.E.; Haenle, M.M.; Oeztuerk, S.; Graeter, T.; Mason, R.A. Comparison of acoustic structure quantification (ASQ), shearwave elastography and histology in patients with diffuse hepatopathies. BMC Med. Imaging 2015, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lee, J.Y.; Lee, K.B.; Han, J.K. Evaluation of hepatic steatosis by using acoustic structure quantification US in a rat model: comparison with pathologic examination and MR spectroscopy. Radiology 2017, 285, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Shankar, P.M. A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000, 47, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Smolikova, R.; Wachowiak, M.P.; Zurada, J.M. An information-theoretic approach to estimating ultrasound backscatter characteristics. Comput. Biol. Med. 2004, 34, 355–370. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Hughes, M.S. Analysis of digitized waveforms using Shannon entropy. J. Acoust. Soc. Am. 1993, 93, 892–906. [Google Scholar] [CrossRef]
- Hughes, M.S.; McCarthy, J.E.; Marsh, J.N.; Arbeit, J.M.; Neumann, R.G.; Fuhrhop, R.W.; Wallace, K.D.; Znidersic, D.R.; Maurizi, B.N.; Baldwin, S.L.; et al. Properties of an entropy-based signal receiver with an application to ultrasonic molecular imaging. J. Acoust. Soc. Am. 2007, 121, 3542–3557. [Google Scholar] [CrossRef] [PubMed]
- Tsui, P.H. Ultrasound detection of scatterer concentration by weighted entropy. Entropy 2015, 17, 6598–6616. [Google Scholar] [CrossRef]
- Tsui, P.H.; Wan, Y.L. Effects of fatty infiltration of the liver on the Shannon entropy of ultrasound backscattered signals. Entropy 2016, 18, 341. [Google Scholar] [CrossRef]
- Fang, J.; Chang, N.F.; Tsui, P.H. Performance evaluations on using entropy of ultrasound log-compressed envelope images for hepatic steatosis assessment: An in vivo animal study. Entropy 2018, 20, 120. [Google Scholar] [CrossRef]
- Zhou, Z.; Tai, D.I.; Wan, Y.L.; Tseng, J.H.; Lin, Y.R.; Wu, S.; Yang, K.C.; Liao, Y.Y.; Yeh, C.K.; Tsui, P.H. Hepatic steatosis assessment with ultrasound small-window entropy imaging. Ultrasound Med. Biol. 2018, 44, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Leite, N.C.; Salles, G.F.; Araujo, A.L.; Cristiane, V.N.; Cardoso, C.R. Prevalence and associated factors of nonalcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int 2009, 29, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, E.; Sullivan, S.; Klein, S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 2010, 51, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.A.F.; Cruz, J.F.; Macena, L.B.; Santana, D.S.; Oliveira, C.C.; Lima, S.O.; Franca, A.V. Association of the nonalcoholic hepatic steatosis and its degrees with the values of liver enzymes and homeostasis model assessment-insulin resistance index. Gastroenterol. Res. 2015, 8, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Isaksen, V.T.; Larsen, M.A.; Goll, R.; Florholmen, J.R.; Paulssen, E.J. Hepatic steatosis, detected by hepatorenal index in ultrasonography, as a predictor of insulin resistance in obese subjects. BMC Obes. 2016, 3, 39. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.C.; Hung, H.F.; Lu, C.W.; Chang, H.H.; Lee, L.T.; Huang, K.C. Association of non-alcoholic fatty liver disease with metabolic syndrome independently of central obesity and insulin resistance. Sci. Rep. 2016, 6, 27034. [Google Scholar] [CrossRef] [PubMed]
- Ballestri, S.; Lonardo, A.; Romagnoli, D.; Carulli, L.; Losi, L.; Day, C.P.; Loria, P. Ultrasonographic fatty liver indicator, a novel score which rules out NASH and is correlated with metabolic parameters in NAFLD. Liver Int. 2012, 32, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Tsui, P.H.; Wang, S.H.; Huang, C.C.; Chiu, C.Y. Quantitative analysis of noise influence on the detection of scatterer concentration by Nakagami parameter. J. Med. Biol. Eng. 2005, 25, 45–51. [Google Scholar]
- Zhou, Z.; Wu, W.; Wu, S.; Jia, K.; Tsui, P.H. Empirical mode decomposition of ultrasound imaging for gain-independent measurement on tissue echogenicity: A feasibility study. Appl. Sci. Basel 2017, 7, 324. [Google Scholar] [CrossRef]
- Tsui, P.H.; Chen, C.K.; Kuo, W.H.; Chang, K.J.; Fang, J.; Ma, H.Y.; Chou, D. Small-window parametric imaging based on information entropy for ultrasound tissue characterization. Sci. Rep. 2017, 7, 41004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakoshi, Y.; Kudo, D.; Toyoki, Y.; Isido, K.; Kimura, N.; Wakiya, T.; Sakuraba, S.; Yoshizawa, T.; Sakamoto, Y.; Kijima, H.; et al. Non-invasive quantification of liver damage by a novel application for statistical analysis of ultrasound signals. Hirosaki Med. J. 2014, 65, 199–208. [Google Scholar]
- Shen, C.C.; Yu, S.C.; Liu, C.Y. Using high-frequency ultrasound statistical scattering model to assess nonalcoholic fatty liver disease (NAFLD) in mice. IEEE Ultrason. Symp. Proc. 2016, 1, 379–382. [Google Scholar] [CrossRef]
- Galassi, A.; Reynolds, K.H.J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Bugianesi, E.; McCullough, A.J.; Marchesini, G. Insulin resistance: A metabolic pathway to chronic liver disease. Hepatology 2005, 42, 987e1000. [Google Scholar] [CrossRef] [PubMed]
- Carl, L.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97e105. [Google Scholar] [CrossRef]
- Asrih, M.; Jornayvaz, F.R. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol. Cell Endocrinol. 2015, 418, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in when cells fail to respond normally to the hormone insulin in patients with nonalcoholic fatty liver disease. J. Clin. Invest 2005, 115, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Bugianesi, E.; Moscatiello, S.; Ciaravella, M.F.; Marchesini, G. Insulin resistance in nonalcoholic fatty liver disease. Curr. Pharm. Des. 2010, 16, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xu, L.; Li, J.; Zhao, S. Nonalcoholic fatty liver disease as a potential risk factor of cardiovascular disease. Eur. J. Gastroenterol. Hepatol. 2015, 27, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Pisto, P.; Santaniemi, M.; Bloigu, R.; Ukkola, O.; Kesäniemi, Y.A. Fatty liver predicts the risk for cardiovascular events in middle-aged population: A population-based cohort study. BMJ Open 2014, 4, e004973. [Google Scholar] [CrossRef] [PubMed]
- Motamed, N.; Rabiee, B.; Poustchi, H.; Dehestani, B.; Hemasi, G.R.; Khonsari, M.R.; Maadi, M.; Saeedian, F.S.; Zamani, F. Non-alcoholic fatty liver disease (NAFLD) and 10-year risk of cardiovascular diseases. Clin. Res. Hepatol. Gastroenterol. 2017, 41, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Misra, V.L.; Khashab, M.; Chalasani, N. Non-alcoholic fatty liver disease and cardiovascular risk. Curr. Gastroenterol. Rep. 2009, 11, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fan, Q.; Wang, T.; Wen, J.; Wang, H.; Zhang, T. Controlled attenuation parameter for assessment of hepatic steatosis grades: A diagnostic meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 17654–17663. [Google Scholar] [PubMed]
- Sasso, M.; Beaugrand, M.; Ledinghen, V.; Douvin, C.; Marcellin, P.; Poupon, R.; Sandrin, L.; Miette, V. Controlled attenuation parameter (CAP): A novel VCTE guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med. Biol. 2010, 36, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Ledinghen, V.; Vergniol, J.; Foucher, J.; Merrouche, W.; Bail, B. Non-invasive diagnosis of liver steatosis using controlled attenuation parameter (CAP) and transient elastography. Liver Int. 2012, 32, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Mikolasevic, I.; Orlic, L.; Franjic, N.; Hauser, G.; Stimac, D.; Milic, S. Transient elastography (FibroScanR) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease: Where do we stand? World J. Gastroenterol. 2016, 22, 7236–7251. [Google Scholar] [CrossRef] [PubMed]
- Mikolasevic, I.; Milic, S.; Orlic, L.; Stimac, D.; Franjic, N.; Targher, G. Factors associated with significant liver steatosis and fibrosis as assessed by transient elastography in patients with one or more components of the metabolic syndrome. J. Diabetes Complic. 2016, 30, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Imajo, K.; Kessoku, T.; Honda, Y.; Tomeno, W.; Ogawa, Y.; Mawatari, H.; Fujita, K.; Yoneda, M.; Taguri, M.; Hyogo, H.; et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 2016, 150, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.P.; Pollett, A.; Kirsch, R.; Pomier-Layrargues, G.; Beaton, M.; Levstik, M.; Duarte-Rojo, A.; Wong, D.; Crotty, P.; Elkashab, M. Controlled attenuation parameter (CAP): A noninvasive method for the detection of hepatic steatosis based on transient elastography. Liver Int. 2012, 32, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Rastogi, A.; Singh, T.; Behari, C.; Gupta, E.; Garg, H.; Kumar, R.; Bhatia, V.; Sarin, SK. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis: Does etiology affect performance? J. Gastroenterol. Hepatol. 2013, 28, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
Variables | Value * |
---|---|
Questionnaires | |
Gender F/M | 243/151 |
Age (yrs) | 40.5 ± 11.3 (20–72) |
Menopause | 25 (6.4) |
Smoking | |
Never | 336 (85.3) |
Current | 42 (10.7) |
Previous | 16 (4.1) |
Alcohol | |
Never | 322 (81.7) |
Current | 64 (16.2) |
Previous | 8 (2) |
Betel Nuts | |
Never | 375 (95.2) |
Current | 19 (4.8) |
Exercise time (mins/per week) | 99.6 ± 189.4 (0–1500) |
Anthropometric variable | |
BMI (kg/m2) | 24.1 ± 4.6 (14.8–43.7) |
Waist (cm) | 81.9 ± 11.3 (55–123) |
SBP (mmHg) | 122.5 ± 16.3 (86–180) |
DBP (mmHg) | 77.9 ± 11.9 (50–133) |
Biochemistry parameters | |
FPG (mg/dL) | 87.7 ± 17.6 (58–272) |
TCH (mg/dL) | 192.9 ± 35.5 (101–320) |
TG (mg/dL) | 112.4 ± 90.3 (25–888) |
HDL-C (mg/dL) | 57.3 ± 15.8 (25–120) |
LDL-C (mg/dL) | 120.8 ± 32.5 (47–238) |
AST (U/L) | 22.9 ± 8.9 (11–68) |
ALT (U/L) | 26.5 ± 21.4 (2–151) |
Insulin (μU/mL) | 9.1 ± 8.2 (2–84.4) |
HOMA-IR | 1.17 ± 1.03 (0.26–10.2) |
MetS (%) | 76 (19.3) |
Ultrasound parameters | |
US-FLI Score | 2.22 ± 2.25 (0–8) |
ASQ FD-ratio | 0.96 ± 0.44 (0.21–2.89) |
Entropy | 3.99 ± 0.06 (3.80–4.07) |
Entropy | ASQ FD-ratio | |||||||
---|---|---|---|---|---|---|---|---|
Variables | 1st tertile | 2nd tertile | 3rd tertile | p-value | 1st tertile | 2nd tertile | 3rd tertile | p-value |
No. of participants | 131 | 131 | 132 | 131 | 131 | 132 | ||
Gender F/M | 113/18 | 76/55 | 54/78 | <0.0001 | 65/66 | 77/54 | 101/31 | <0.0001 |
Age (yrs) | 38.33 ± 9.87 | 41.6 ± 11.86 | 41.7 ± 11.81 | 0.009 | 41.40 ± 11.79 | 40.79 ± 11.02 | 39.40 ± 11.07 | 0.2602 |
Waist (cm) | 73.31 ± 7.28 | 81.96 ± 9.9 | 90.43 ± 9.18 | <0.0001 | 88.24 ± 10.98 | 82.61 ± 9.99 | 74.79 ± 8.32 | <0.0001 |
BMI * (kg/m2) | 20.83 ± 2.35 | 24.2 ± 4.05 | 27.29 ± 4.41 | <0.0001 | 26.35 ± 4.47 | 24.61 ± 4.70 | 21.40 ± 2.78 | <0.0001 |
SBP (mmHg) | 114.88 ± 13.1 | 121.98 ± 16.97 | 130.58 ± 14.81 | <0.0001 | 128.76 ± 16.74 | 122.99 ± 15.48 | 115.76 ± 14.06 | <0.0001 |
DBP (mmHg) | 73.58 ± 9.93 | 76.81 ± 12.44 | 83.36 ± 11.27 | <0.0001 | 81.56 ± 11.95 | 77.82 ± 12.00 | 74.42 ± 10.86 | <0.0001 |
FPG (mg/dL) | 81.64 ± 8.36 | 86.95 ± 11.45 | 94.47 ± 25.39 | <0.0001 | 92.85 ± 24.77 | 87.59 ± 13.60 | 82.70 ± 9.13 | <0.0001 |
TCH (mg/dL) | 181.29 ± 31.12 | 194.95 ± 35.77 | 202.33 ± 36.34 | <0.0001 | 198.20 ± 36.30 | 195.49 ± 36.13 | 185.01 ± 32.87 | 0.0353 |
TG (mg/dL) | 65.44 ± 28.39 | 106.46 ± 67.7 | 164.86 ± 118.71 | <0.0001 | 151.11 ± 121.47 | 111.71 ± 72.79 | 74.63 ± 40.21 | <0.0001 |
HDL-C (mg/dL) | 65.66 ± 13.78 | 57.03 ± 14.59 | 49.17 ± 14.63 | <0.0001 | 50.66 ± 12.33 | 56.26 ± 17.57 | 64.82 ± 13.83 | <0.0001 |
LDL-C (mg/dL) | 106.73 ± 27.43 | 123.6 ± 31.9 | 131.98 ± 32.79 | <0.0001 | 127.57 ± 32.65 | 124.27 ± 31.24 | 110.64 ± 31.23 | 0.0022 |
AST (U/L) | 19.60 ± 5.92 | 22.59 ± 8.48 | 26.37 ± 10.42 | <0.0001 | 26.68 ± 10.72 | 22.49 ± 8.50 | 19.45 ± 5.06 | <0.0001 |
ALT (U/L) | 15.84 ± 7.53 | 25.01 ± 18.65 | 38.67 ± 26.67 | <0.0001 | 39.51 ± 28.02 | 24.93 ± 16.31 | 15.26 ± 5.99 | <0.0001 |
Insulin (μU/mL) | 5.52 ± 3.4 | 9.06 ± 9.29 | 12.05 ± 8.7 | <0.0001 | 10.71 ± 7.54 | 10.44 ± 10.63 | 5.7 ± 3.49 | <0.0001 |
HOMA-IR | 0.71 ± 0.44 | 1.16 ± 1.14 | 1.56 ± 1.10 | <0.0001 | 1.39 ± 0.98 | 1.33 ± 1.31 | 0.73 ± 0.45 | <0.0001 |
MetS (%) | 1 (0.8%) | 20 (15.3%) | 55 (41.7%) | <0.0001 | 44 (33.6%) | 24 (18.3%) | 8 (6.1%) | <0.0001 |
US-FLI Score | 0.53 ± 0.9 | 1.71 ± 1.55 | 4.42 ± 2.0 | <0.0001 | 3.82 ± 2.40 | 2.18 ± 1.82 | 0.67 ± 1.09 | <0.0001 |
Entropy | ASQ FD-ratio | |||||||
---|---|---|---|---|---|---|---|---|
1st tertile | 2nd tertile | 3rd tertile | p-value | 1st tertile | 2nd tertile | 3rd tertile | p-value | |
(n = 131) | (n = 131) | (n = 132) | (n = 131) | (n = 131) | (n = 132) | |||
Model 1 * | ref | 51.29 (2.76–164.43) | 85.57 (11.25–650.56) | <0.0001 | ref | 0.48 (0.26–0.89) | 0.04 (0.01–0.14) | <0.0001 |
Model 2 | ref | 10.27 (1.29–82.14) | 26.84 (3.34–215.4) | 0.0007 | ref | 0.59 (0.30–1.18) | 0.41 (0.16–1.05) | 0.1144 |
Model 3 | ref | 7.91 (0.96–65.18) | 20.47 (2.48–168.67) | 0.0021 | ref | 0.55 (0.27–1.14) | 0.42 (0.15–1.17) | 0.13 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Liao, Y.-Y.; Yeh, C.-K.; Yang, K.-C.; Tsui, P.-H. Ultrasound Entropy Imaging of Nonalcoholic Fatty Liver Disease: Association with Metabolic Syndrome. Entropy 2018, 20, 893. https://doi.org/10.3390/e20120893
Lin Y-H, Liao Y-Y, Yeh C-K, Yang K-C, Tsui P-H. Ultrasound Entropy Imaging of Nonalcoholic Fatty Liver Disease: Association with Metabolic Syndrome. Entropy. 2018; 20(12):893. https://doi.org/10.3390/e20120893
Chicago/Turabian StyleLin, Ying-Hsiu, Yin-Yin Liao, Chih-Kuang Yeh, Kuen-Cheh Yang, and Po-Hsiang Tsui. 2018. "Ultrasound Entropy Imaging of Nonalcoholic Fatty Liver Disease: Association with Metabolic Syndrome" Entropy 20, no. 12: 893. https://doi.org/10.3390/e20120893
APA StyleLin, Y. -H., Liao, Y. -Y., Yeh, C. -K., Yang, K. -C., & Tsui, P. -H. (2018). Ultrasound Entropy Imaging of Nonalcoholic Fatty Liver Disease: Association with Metabolic Syndrome. Entropy, 20(12), 893. https://doi.org/10.3390/e20120893