Performance of Segmented Thermoelectric Cooler Micro-Elements with Different Geometric Shapes and Temperature-Dependent Properties
Abstract
:1. Introduction
2. One-Dimensional Model of a Segmented TEMC
2.1. Temperature at the Junction ()
2.2. Cooling Power () and Coefficient of Performance ()
3. Materials with Temperature-Dependent Properties
4. Results
4.1. Optimum Material Configuration and Electric Current
4.1.1. Legs with Rectangular Prism Geometry
4.1.2. Legs with Trapezoidal Prism Geometry with Small Junction Contact Area
4.1.3. Legs with Trapezoidal Prism Geometry with Large Junction Contact Area
4.2. Spatial Temperature Distribution: Thomson Heat Contributions
4.3. Geometric Optimization of the Rectangular Prism
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviation
A | Area (m) |
COP | Coefficient of performance |
CPM | Constant material property |
CPU | Central processing unit |
I | Electrical current (A) |
Electrical current density (A m) | |
Heat flux (W m) | |
L | Length (m) |
Electrical power input (W) | |
Cooling power (W) | |
Heat flow released (W) | |
STEMC | Segmented thermoelectric microcooler |
T | Temperature (K) |
Cold side temperature (K) | |
Hot side temperature (K) | |
Temperature in the junction (K) | |
TDPM | Temperature-dependent material property |
TEC | Thermoelectric cooler |
TEG | Thermoelectric generator |
TEMC | Thermoelectric microcoolers |
Greek letters | |
Seebeck coefficient (V K) | |
Difference | |
Thermal conductivity (W mK) | |
Micro | |
Electrical conductivity [(m)] | |
Thomson coefficient [V K] | |
Subscripts | |
1 | appropriate for segment 1 |
2 | appropriate for segment 2 |
avg | Average values |
max | Maximum values |
opt | Optimal |
Superscripts | |
COP | At maximum coefficient of performance |
At maximum cooling power |
References
- El-Genk, M.S.; Saber, H.H.; Caillat, T. Efficient segmented thermoelectric unicouples for space power applications. Energy Convers. Manag. 2003, 44, 1755–1772. [Google Scholar] [CrossRef]
- Tian, H.; Sun, X.; Jia, Q.; Liang, X.; Shu, G.; Wang, X. Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine. Energy 2015, 84, 121–130. [Google Scholar] [CrossRef]
- Burshteyn, A.I. Semiconductor Thermoelectric Devices; Temple press: London, UK, 1964. [Google Scholar]
- LaBounty, C.; Shakouri, A.; Bowers, J.E. Design and characterization of thin film microcoolers. J. Appl. Phys. 2001, 89, 4059–4064. [Google Scholar] [CrossRef]
- Yao, D.J. In-Plane MEMS Thermoelectric Microcooler. Ph.D. Dissertation, UCLA, Los Angeles, CA, USA, 2001. [Google Scholar]
- Lee, H. The Thomson effect and the the ideal equation on thermoelectric coolers. Energy 2013, 56, 61–69. [Google Scholar] [CrossRef]
- Huang, M.; Yen, R.; Wang, A. The influence of the Thomson effect on the performance of a thermoelectric cooler. Int. J. Heat Mass Transf. 2005, 48, 413–418. [Google Scholar] [CrossRef]
- Hadjistassou, C.; Kyriakides, E.; Georgiou, J. Designing high efficiency segmented thermoelectric generators. Energy Convers. Manag. 2013, 66, 165–172. [Google Scholar] [CrossRef]
- Yoon, S.; Cho, J.; Koo, H.; Bae, S.; Ahn, S.; Kim, G.R.; Kim, J.; Park, C. Thermoelectric Properties of n-Type Bi2Te3/PbSe0.5Te0.5 Segmented Thermoelectric Material. Electron. Mater. 2014, 43, 414–418. [Google Scholar] [CrossRef]
- Lamba, R.; Kaushik, S.C. Thermodynamic analysis of thermoelectric generator including influence of Thomson effect and leg geometry configuration. Energy Convers. Manag. 2017, 144, 388–398. [Google Scholar] [CrossRef]
- Fabián-Mijangos, A.; Min, G.; Alvarez-Quintana, J. Enhanced performance thermoelectric module having asymmetrical legs. Energy Convers. Manag. 2017, 148, 1372–1381. [Google Scholar] [CrossRef]
- Enescu, D.; Virjoghe, E.O. A review on thermoelectric cooling parameters and performance. Renew. Sustain. Energy Rev. 2014, 38, 903–916. [Google Scholar] [CrossRef]
- De Aloysio, G.; D’Alessandro, G.; De Monte, F. An analytical solution for the hyperbolic unsteady thermal behavior of micro-thermoelectric coolers with a suddenly time-dependent heat generation. Int. J. Heat Mass Transf. 2016, 95, 972–983. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, D.; Zhao, F.-Y.; Tang, J.-F. Performance analysis and assessment of thermoelectric micro cooler for electronic devices. Energy Convers. Manag. 2016, 124, 203–211. [Google Scholar] [CrossRef]
- Su, Y.; Lu, J.; Huang, B. Free-standing planar thin-film thermoelectric micro-refrigerators and the effects of thermal and electrical contact resistances. Int. J. Heat Mass Transf. 2018, 117, 436–446. [Google Scholar] [CrossRef]
- Lv, H.; Wang, X.-D.; Wang, T.-H.; Cheng, C.-H. Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section. Appl. Energy 2016, 164, 501–508. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, F.-Y.; Yang, H.-X.; Tang, G.-F. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system. Energy 2015, 83, 1–8. [Google Scholar] [CrossRef]
- Barry, M.M.; Agbim, K.A.; Rao, P.; Clifford, C.E.; Reddy, B.V.K.; Chyu, M.K. Geometric optimization of thermoelectric elements for maximum efficiency and power output. Energy 2016, 112, 388–407. [Google Scholar] [CrossRef]
- Karimi, G.; Culham, J.R.; Kazerouni, V. Performance analysis of multi-stage thermoelectric coolers. Int. J. Refrig. 2011, 34, 2129–2135. [Google Scholar] [CrossRef]
- Sharma, S.; Dwivedi, V.; Pandit, S. Thermoeconomic Analysis of Multi-Stage Thermoelectric Cooler. Int. J. Therm. Environ. Eng. 2014, 8, 77–82. [Google Scholar]
- Wang, X.-D.; Wang, Q.-H.; Xu, J. Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model. Energy 2014, 65, 419–429. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Shih, C. Maximizing the cooling capacity and COP of two-stage thermoelectric coolers through genetic algorithm. Appl. Therm. Eng. 2006, 26, 937–947. [Google Scholar] [CrossRef]
- Callen, H.B. The Application of Onsager’s Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects. Phys. Rev. 1948, 73, 1349–1358. [Google Scholar] [CrossRef]
- Goupil, C.; Seifert, W.; Zabrocki, K.; Müller, E.; Snyder, G.J. Thermodynamics of Thermoelectric Phenomena and Applications. Entropy 2011, 13, 1481–1517. [Google Scholar] [CrossRef]
- Seifert, W.; Ueltzen, M.; Müller, E. One-dimensional Modelling of Thermoelectric Cooling. Phys. Stat. Sol. 2002, 194, 277–290. [Google Scholar] [CrossRef]
- Seifert, W.; Pluschke, V. Maximum cooling power of graded thermoelectric cooler. Phys. Stat. Sol. B 2014, 251, 1416–1425. [Google Scholar] [CrossRef]
- Meng, F.; Chen, L.; Sun, F. Effects of temperature dependence of thermoelectric properties on the power and efficiency of a multielement thermoelectric generator. Energy Environ. 2012, 3, 137–150. [Google Scholar]
- Süssmann, H.; Müller, E. Verification of a transport model for p-Type (Bi0.5Sb0.5)2Te3 and (Bi0.25Sb0.75)2Te3 solid solutions by means of temperature dependent thermoelectric properties below room temperature. In Proceedings of the XIVth International Conference Thermoelectrics, St. Peterburg, Russia, 27–30 June 1995; pp. 1–6. [Google Scholar]
- Goldsmid, H.; Douglas, R. The use of semiconductors in thermoelectric refrigeration. Brit. J. Appl. Phys. 1954, 5, 386–390. [Google Scholar] [CrossRef]
- Goldsmid, H. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation. Materials 2014, 7, 2577–2592. [Google Scholar] [CrossRef] [PubMed]
- Sahin, A.; Yilbas, B. The thermoelement as thermoelectric power generator: Effect of leg geometry on the efficiency and power generation. Energy Convers. Manag. 2013, 65, 26–32. [Google Scholar] [CrossRef]
- Shi, Y.; Mei, D.; Yao, Z.; Wang, Y.; Liu, H.; Chen, Z. Nominal power density analysis of thermoelectric pins with non-constant cross sections. Energy Convers. Manag. 2015, 97, 1–6. [Google Scholar] [CrossRef]
- Huang, I.-Y.; Lin, J.-C.; She, K.-D.; Li, M.-C.; Chen, J.-H.; Kuo, J.-S. Development of low-cost micro-thermoelectric coolers utilizing MEMS technology. Sens. Actuators A Phys. 2008, 148, 176–185. [Google Scholar] [CrossRef]
- Ruiz-Ortega, P.E.; Olivares-Robles, M.A. Analysis of a hybrid thermoelectric microcooler: Thomson heat and geometric optimization. Entropy 2017, 19, 312. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, O.J. Analysis on the cooling performance of the thermoelectric micro-cooler. Int. J. Heat Mass Transf. 2007, 50, 1982–1992. [Google Scholar] [CrossRef]
- Snyder, G.J.; Fleurial, J.-P.; Caillat, T.; Yang, R.G.; Chen, G. Supercooling of Peltier cooler using a current pulse. J. Appl. Phys. 2002, 92, 1564. [Google Scholar] [CrossRef]
- Yang, R.; Chen, G.; Kumar, A.R.; Snyder, G.J.; Fleurial, J.P. Transient cooling of thermoelectric coolers and its applications for microdevices. Energy Convers. Manag. 2005, 46, 1407–1421. [Google Scholar] [CrossRef]
- Yazawa, K.; Ziabari, A.; Kho, Y.; Shakouri, A. Cooling Power Optimization for Hybrid Solid-State and Liquid Cooling in Integrated Circuit Chips with Hotspots. In Proceedings of the 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 30 May–1 June 2012; pp. 99–106. [Google Scholar]
- Kho, Y.; Yazawa, K.; Shakouri, A. Performance and mass optimization of thermoelectric microcoolers. Int. J. Therm. Sci. 2015, 97, 143–151. [Google Scholar]
Property | Material 1, | Material 2, | Unit |
---|---|---|---|
V K | |||
W m K | |||
m) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badillo-Ruiz, C.A.; Olivares-Robles, M.A.; Ruiz-Ortega, P.E. Performance of Segmented Thermoelectric Cooler Micro-Elements with Different Geometric Shapes and Temperature-Dependent Properties. Entropy 2018, 20, 118. https://doi.org/10.3390/e20020118
Badillo-Ruiz CA, Olivares-Robles MA, Ruiz-Ortega PE. Performance of Segmented Thermoelectric Cooler Micro-Elements with Different Geometric Shapes and Temperature-Dependent Properties. Entropy. 2018; 20(2):118. https://doi.org/10.3390/e20020118
Chicago/Turabian StyleBadillo-Ruiz, Carlos Alberto, Miguel Angel Olivares-Robles, and Pablo Eduardo Ruiz-Ortega. 2018. "Performance of Segmented Thermoelectric Cooler Micro-Elements with Different Geometric Shapes and Temperature-Dependent Properties" Entropy 20, no. 2: 118. https://doi.org/10.3390/e20020118
APA StyleBadillo-Ruiz, C. A., Olivares-Robles, M. A., & Ruiz-Ortega, P. E. (2018). Performance of Segmented Thermoelectric Cooler Micro-Elements with Different Geometric Shapes and Temperature-Dependent Properties. Entropy, 20(2), 118. https://doi.org/10.3390/e20020118