The Symplectic Camel and Poincaré Superrecurrence: Open Problems
Abstract
:1. Introduction
2. Subsystems of Hamiltonian Systems
2.1. Description of the Problem
2.2. Non-Squeezing and Packing
2.3. One Step Further: Subsystems
2.4. A Simple Case of Superrecurrence
3. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Poincaré, H. Sur le problème des trois corps et les équations de la dynamique, Mémoire couronné du prix de S.M. le roi Oscar II de Suède. Acta Math. 1890, 13, A3–A270. (In French) [Google Scholar]
- De Gosson, M. Principles of Newtonian and Quantum Mechanics, the Need for Planck’s Constant, 2nd ed.; With a Foreword by Hiley, B.; World Scientific: Singapore, 2016. [Google Scholar]
- De Gosson, M. Symplectic Geometry and Quantum Mechanics; Birkhäuser: Basel, Switzerland, 2006. [Google Scholar]
- De Gosson, M. The Symplectic Camel and the Uncertainty Principle: The Tip of an Iceberg? Found. Phys. 2009, 39, 194–214. [Google Scholar] [CrossRef] [Green Version]
- De Gosson, M.; Luef, F. Symplectic Capacities and the Geometry of Uncertainty: The Irruption of Symplectic Topology in Classical and Quantum Mechanics. Phys. Rep. 2009, 484, 131–179. [Google Scholar] [CrossRef]
- De Gosson, M.A.; Hiley, B.J. Imprints of the quantum world in classical mechanics. Found Phys. 2011, 41, 1415–1436. [Google Scholar] [CrossRef]
- Kalogeropoulos, N. Time irreversibility from symplectic non-squeezing. Phys. A Stat. Mech. Appl. 2018, 495, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Maruskin, J.M.; Scheeres, D.J.; Bloch, A.M. Dynamics of Symplectic Subvolumes. SIAM J. Appl. Dyn. Syst. 2009, 8, 180–201. [Google Scholar] [CrossRef] [Green Version]
- Scheeres, D.J.; de Gosson, M.A.; Maruskin, J.M. Applications of Symplectic Topology to orbit Uncertainty and Spacecraft Navigation. J. Astronaut. Sci. 2012, 59, 63–83. [Google Scholar] [CrossRef]
- De Gosson, M. On the Use of Minimum Volume Ellipsoids and Symplectic Capacities for Studying Classical Uncertainties for Joint Position—Momentum Measurements. J. Stat. Mech. 2010, 2010, P11005. [Google Scholar] [CrossRef]
- Altmann, E.G.; Kantz, H. Recurrence time analysis, long-term correlations, and extreme events. Phys. Rev. E. 2005, 71, 056106. [Google Scholar] [CrossRef] [PubMed]
- Sharov, S.R. Basis of Local Approach in Classical Statistical Mechanics. Entropy 2005, 7, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. The Emperor’s New Mind; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Katok, A. Ergodic perturbations of degenerate integrable Hamiltonian systems. Math. USSR Izv. 1973, 7, 535–571. [Google Scholar] [CrossRef]
- Gromov, M. Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 1985, 82, 307–347. [Google Scholar] [CrossRef]
- Reich, E.S. How camels could explain quantum uncertainty. New Sci. 2009, 12, 2697. [Google Scholar]
- Arnol’d, V.I. Mathematical Methods of Classical Mechanics, 2nd ed.; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Abbondandolo, A.; Matveyev, S. Middle-dimensional squeezing and non-squeezing behaviour of symplectomorphisms. arXiv 2011, arXiv:1105.2931v1. [Google Scholar]
- Schlenk, F. Symplectic Embedding Problems, Old and New. Bull. Am. Math. Soc. 2018, 55, 139–182. [Google Scholar] [CrossRef]
- Polterovich, L. Quantum Footprints of Symplectic Rigidity. EMS Newsl. 2016, 12, 16–21. [Google Scholar] [CrossRef]
- Charles, L.; Polterovich, L. Quantum Speed Limit Versus Classical Displacement Energy. In Annales Henri Poincaré; Springer: Berlin/Heidelberg, Germany, 2018; Volume 19, pp. 1215–1257. [Google Scholar]
- De Gosson, M. Born–Jordan Quantization and the Equivalence of the Schrödinger and Heisenberg Pictures. Found. Phys. 2014, 44, 1096–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Gosson, M. Introduction to Born–Jordan Quantization: Theory and Applications; Series Fundamental Theories of Physics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- De Gosson, M. Paths of Canonical Transformations and their Quantization. Rev. Math. Phys. 2015, 27, 1530003. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gosson, M.A.d. The Symplectic Camel and Poincaré Superrecurrence: Open Problems. Entropy 2018, 20, 499. https://doi.org/10.3390/e20070499
Gosson MAd. The Symplectic Camel and Poincaré Superrecurrence: Open Problems. Entropy. 2018; 20(7):499. https://doi.org/10.3390/e20070499
Chicago/Turabian StyleGosson, Maurice A. de. 2018. "The Symplectic Camel and Poincaré Superrecurrence: Open Problems" Entropy 20, no. 7: 499. https://doi.org/10.3390/e20070499
APA StyleGosson, M. A. d. (2018). The Symplectic Camel and Poincaré Superrecurrence: Open Problems. Entropy, 20(7), 499. https://doi.org/10.3390/e20070499