On the van der Waals Gas, Contact Geometry and the Toda Chain
Abstract
:1. Introduction
2. The PDEs of State of the van der Waals Gas
3. Relation to the Toda Chain
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Callen, H. Thermodynamics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Arnold, V. Mathematical Methods of Classical Mechanics. In Graduate Texts in Mathematics; Springer: Berlin, Germany, 1989. [Google Scholar]
- Bravetti, A. Contact Hamiltonian Dynamics: The Concept and its Use. Entropy 2017, 19, 535. [Google Scholar] [CrossRef]
- Mrugala, R.; Nulton, J.; Schön, J.; Salamon, P. Contact Structure in Thermodynamic Theory. Rep. Math. Phys. 1991, 29, 109–121. [Google Scholar] [CrossRef]
- Isidro, J.M.; de Córdoba, P.F. On the Contact Geometry and the Poisson Geometry of the Ideal Gas. Entropy 2018, 20, 247. [Google Scholar] [CrossRef]
- Rajeev, G. Quantization of Contact Manifolds and Thermodynamics. Ann. Phys. 2008, 323, 768–782. [Google Scholar] [CrossRef]
- Rajeev, G. A Hamilton–Jacobi Formalism for Thermodynamics. Ann. Phys. 2008, 323, 2265–2285. [Google Scholar] [CrossRef]
- Toda, M. Vibration of a Chain with Nonlinear Interaction. J. Phys. Soc. Jpn. 1967, 22, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Toda, M. Wave Propagation in Anharmonic Lattices. J. Phys. Soc. Jpn. 1968, 23, 501–506. [Google Scholar] [CrossRef]
- Toda, M. Waves in Nonlinear Lattice. Prog. Theor. Phys. Suppl. 1970, 45, 174–200. [Google Scholar] [CrossRef]
- Cabrera, D.; de Córdoba, P.F.; Isidro, J.M.; Molina, J.V. Entropy, Topological Theories and Emergent Quantum Mechanics. Entropy 2017, 19, 87. [Google Scholar] [CrossRef]
- Schwarz, A. Quantum Field Theory and Topology. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin, Germany, 2010. [Google Scholar]
- Ruppeiner, G. Riemannian Geometry in Thermodynamic Fluctuation Theory. Rev. Mod. Phys. 1995, 67, 605. [Google Scholar] [CrossRef]
- Velázquez, L. Curvature of Fluctuation Geometry and its Implications on Riemannian Fluctutation Theory. J. Phys. A Math. Theor. 2013, 46, 345003. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarcón, D.; Fernández de Córdoba, P.; Isidro, J.M.; Orea, C. On the van der Waals Gas, Contact Geometry and the Toda Chain. Entropy 2018, 20, 554. https://doi.org/10.3390/e20080554
Alarcón D, Fernández de Córdoba P, Isidro JM, Orea C. On the van der Waals Gas, Contact Geometry and the Toda Chain. Entropy. 2018; 20(8):554. https://doi.org/10.3390/e20080554
Chicago/Turabian StyleAlarcón, Diego, P. Fernández de Córdoba, J. M. Isidro, and Carlos Orea. 2018. "On the van der Waals Gas, Contact Geometry and the Toda Chain" Entropy 20, no. 8: 554. https://doi.org/10.3390/e20080554
APA StyleAlarcón, D., Fernández de Córdoba, P., Isidro, J. M., & Orea, C. (2018). On the van der Waals Gas, Contact Geometry and the Toda Chain. Entropy, 20(8), 554. https://doi.org/10.3390/e20080554