Statistics of Heat Transfer in Two-Dimensional Turbulent Rayleigh-Bénard Convection at Various Prandtl Number
Abstract
:1. Introduction
2. Mathematical Equation of Fluid and Lattice Boltzmann Method
3. Calculation Results and Discussions
3.1. Global Quantities of Turbulent RB Convection
3.2. Scaling of Energy Spectra, Fluxes and Spatial Intermittency
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hartmann, D.L.; Moy, L.A.; Fu, Q. Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 2011, 14, 4495–4511. [Google Scholar] [CrossRef]
- Marshall, J.; Schott, F. Open-Ocean convection: Observations, theory, and models. Rev. Geophys. 1999, 37, 1–64. [Google Scholar] [CrossRef]
- Cardin, P.; Olson, P. Chaotic thermal convection in a rapidly rotating spherical shell: Consequences for flow in the outer core. Phys. Earth Planet. Inter. 1994, 82, 235–259. [Google Scholar] [CrossRef]
- Lohse, D.; Xia, K.Q. Small-Scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid. Mech. 2010, 42, 335–364. [Google Scholar] [CrossRef]
- Chilla, F.; Schumacher, J. New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 2012, 35, 58–82. [Google Scholar] [CrossRef] [PubMed]
- Ahlers, G.; Grossmann, S.; Lohse, D. Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 2009, 81, 503–537. [Google Scholar] [CrossRef]
- Scheel, J.D.; Emran, M.S.; Schumacher, J. Resolving the fine-scale structure in turbulent Rayleigh–Bénard convection. New J. Phys. 2013, 15, 113063–113075. [Google Scholar] [CrossRef]
- Hu, Y.P. Flow pattern and heat transfer in Rayleigh-Bénard convection of cold water near its density maximum in a rectangular cavity. Int. J. Heat Mass Trans. 2017, 107, 1065–1075. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.R.; Zhang, H. Onset of double-diffusive Rayleigh-Bénard convection of a moderate Prandtl number binary mixture in cylindrical enclosures. Int. J. Heat Mass Trans. 2017, 107, 500–509. [Google Scholar] [CrossRef]
- Vincent, A.P.; Yuen, D.A. Transition to turbulent thermal convection beyond Ra = 1010 detected in numerical simulations. Phys. Rev. E 2007, 61, 5241–5249. [Google Scholar] [CrossRef]
- Schmalzl, J.; Breuer, M.; Hansen, U. On the validity of two-dimensional numerical approaches to time-dependent thermal convection. Europhys. Lett. 2004, 67, 390–399. [Google Scholar] [CrossRef]
- Zhong, J.Q.; Ahlers, G. Heat transport and thelarge-scale circulation in rotating Turbulent Rayleigh-Bénard convection. J. Fluid Mech. 2014, 665, 300–333. [Google Scholar] [CrossRef]
- Puthenveettil, B.A.; Arakeri, J.H. Plume structure in Rayleigh-number convection. J. Fluid Mech. 2005, 542, 217–249. [Google Scholar] [CrossRef]
- Shishkina, O.; Wagner, C. Local heat fluxes in turbulent Rayleigh-Bénard convection. Phys. Fluids 2007, 9, 0851071–08510713. [Google Scholar] [CrossRef]
- Shishkina, O.; Wagner, C. Analysis of sheet like thermal plumes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 2012, 599, 383–404. [Google Scholar] [CrossRef]
- Kaczorowski, M.; Wagner, C. Analysis of the thermal plumes in turbulent Rayleigh-Bénard convection based on well-resolved numerical simulations. J. Fluid Mech. 2011, 618, 89–112. [Google Scholar] [CrossRef]
- Kaczorowski, M.; Chong, K.L.; Xia, K.Q. Turbulent flow in the bulk of Rayleigh–Bénard convection: Aspect-ratio dependence of the small-scale properties. J. Fluid Mech. 2014, 747, 73–102. [Google Scholar] [CrossRef]
- Zhou, Q.; Xia, K.Q. Aspect ratio dependence of heat transport by turbulent Rayleigh-Bénard convectin in rectangular cells. J. Fluid Mech. 2012, 710, 260–276. [Google Scholar] [CrossRef]
- Xu, H.; Sagaut, P. Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics. J. Comput. Phys. 2011, 230, 5353–5382. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurti, R. On the transition to turbulent convection. Part 1. The transition from two- to three- dimensional flow. J. Fluid Mech. 1970, 42, 295–307. [Google Scholar] [CrossRef]
- Krishnamurti, R. On thetransition to turbulent convection. Part 2. The transition to time-dependent flow. J. Fluid Mech. 1970, 42, 309–320. [Google Scholar] [CrossRef]
- Busse, F.H.; Whitehead, J.A. Instabilities of convection rolls in a high Prandtl number fluid. J. Fluid. Mech. 1971, 47, 305–320. [Google Scholar] [CrossRef]
- Succi, S. The Lattice Boltzmann Equation: For Complex States Flowing Matter; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Qian, Y.H.; d’Humieres, D.; Lallemand, P. Lattice BGK Models for Navier-Stokes Equation. Europhys. Lett. 1992, 17, 479–484. [Google Scholar] [CrossRef]
- Liu, H.H.; Zhang, Y.H.; Valocchi, A.J. Modeling and Simulation of Thermocapillary Flows Using Lattice Boltzmann Method. J. Comput. Phys. 2012, 231, 4433–4453. [Google Scholar] [CrossRef]
- Wei, Y.K.; Wang, Z.D.; Yang, J.F.; Dou, H.S.; Qian, Y.H. A simple lattice Boltzmann model for turbulence Rayleigh-Bénard thermal convection. Comput. Fluids 2015, 118, 167–171. [Google Scholar] [CrossRef]
- Wei, Y.K.; Dou, H.S.; Yang, H. Characteristics of heat transfer with different dimensionless distance in an enclosure. Mod. Phys. Lett. B 2016, 30, 1650364–1650369. [Google Scholar] [CrossRef]
- Chen, H.; Kandasamy, S.; Orszag, S.; Shock, R. Extended Boltzmann kinetic equation for turbulent flows. Science 2003, 301, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Shi, B.C.; Chai, Z.H. An efficient phase-field-based multiple-relaxation-time lattice Boltzmann model for three-dimensional multiphase flows. Comput. Math. Appl. 2017, 73, 1524–1538. [Google Scholar] [CrossRef]
- Liang, H.; Shi, B.C.; Chai, Z.H. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Phys. Rev. E 2016, 93, 033113–033119. [Google Scholar] [CrossRef] [PubMed]
- Montessoria, A.; Prestininzi, P.; Roccaa, M.L.; Falcucci, G.; Succicd, S.; Kaxiras, E. Effects of Knudsen diffusivity on the effective reactivity of nanoporous catalyst media. J. Comput. Sci. 2016, 17, 377–383. [Google Scholar] [CrossRef]
- Xu, H.; Malaspinas, O.; Sagaut, P. Sensitivity analysis and determination of free relaxation parameters for the weakly-compressible MRT-LBM schemes. J. Comput. Phys. 2012, 231, 7335–7367. [Google Scholar] [CrossRef]
- Liu, H.H.; Valocchi, A.J.; Zhang, Y.H. Lattice Boltzmann Phase Field Modeling Thermocapillary Flows in a Confined Microchannel. J. Comput. Phys. 2014, 256, 334–356. [Google Scholar] [CrossRef] [Green Version]
- Aidun, C.K. Lattice-Boltzmann Method for Complex Flows. Annu. Rev. Fluid Mech. 2010, 42, 439–472. [Google Scholar] [CrossRef]
- Shan, X. Simulation of Rayleigh–Bénard convection using a lattice Boltzmann method. Phys. Rev. E 1997, 55, 2780–2788. [Google Scholar] [CrossRef]
- Krastev, V.K.; Falcucci, G. Simulating Engineering Flows through Complex Porous Media via the Lattice Boltzmann Method. Energies 2018, 11, 715. [Google Scholar] [CrossRef]
- Lohse, D.; Toschi, F. Ultimate state of thermal convection. Phys. Rev. Lett. 2003, 90, 034502–034507. [Google Scholar] [CrossRef] [PubMed]
- Gibert, H.; Pabiou, F.; Castaing, B. High-Rayleigh-number convection in a vertical channel. Phys. Rev. Lett. 2006, 96, 084501–084510. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.D.; Tong, P.; Xia, K.Q. Scaling of the local convective heat flux in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 2008, 100, 244503–244510. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Wei, Y.; Zhu, Z.; Dou, H.; Qian, Y. Statistics of Heat Transfer in Two-Dimensional Turbulent Rayleigh-Bénard Convection at Various Prandtl Number. Entropy 2018, 20, 582. https://doi.org/10.3390/e20080582
Yang H, Wei Y, Zhu Z, Dou H, Qian Y. Statistics of Heat Transfer in Two-Dimensional Turbulent Rayleigh-Bénard Convection at Various Prandtl Number. Entropy. 2018; 20(8):582. https://doi.org/10.3390/e20080582
Chicago/Turabian StyleYang, Hui, Yikun Wei, Zuchao Zhu, Huashu Dou, and Yuehong Qian. 2018. "Statistics of Heat Transfer in Two-Dimensional Turbulent Rayleigh-Bénard Convection at Various Prandtl Number" Entropy 20, no. 8: 582. https://doi.org/10.3390/e20080582
APA StyleYang, H., Wei, Y., Zhu, Z., Dou, H., & Qian, Y. (2018). Statistics of Heat Transfer in Two-Dimensional Turbulent Rayleigh-Bénard Convection at Various Prandtl Number. Entropy, 20(8), 582. https://doi.org/10.3390/e20080582