Approximation of Densities on Riemannian Manifolds
Abstract
:1. Introduction
2. Some Notions from Riemannian Geometry
2.1. Differentiable Manifolds
2.2. Tangent and Cotangent Vectors
2.3. Pullback and Pushforward
2.4. Vector Fields and Covariant Derivatives
2.5. Riemannian Metric and Geodesics
2.6. Exponential and Logarithm Maps
2.7. Curvature and Jacobi Fields
2.8. Measures and Integration over a Riemannian Manifold
2.9. The Laplace–Beltrami Operator
3. Parametric Estimation
3.1. Directional Statistics
3.2. Gaussian-Like Distributions
3.3. Wrapped Distributions
3.4. Exponential Families Arising from Group Actions
- μ is not concentrated on a proper affine subspace of E.
- The set of the such that:
- ν is a measure on , with and it exists such that:
- is the polar coordinates mapping: .
4. Non-Parametric Density Estimation by Projection
4.1. The Euclidean Case
- The estimated density is not necessarily non-negative as the expansion functions are generally not.
- Depending on the underlying measure space, a countable Hilbert basis may not exist and, even if this holds, the expansion functions may not be expressed in a closed form.
4.2. The Riemannian Case
5. Non-Parametric Kernel Estimation
5.1. The Euclidean Case
5.2. The Riemannian Case
5.3. Computing the Kernel in the Riemannian Case
6. Discrete Density Estimation through Quantization
6.1. Optimal Quantization
6.2. A Numerical Scheme
7. Some Open Problems
7.1. Parametric Estimation and Symplectic Structure
- Use local coordinates as parameters, and mimic the vector case as in [9].
- Replace the abelian group underlying by a Lie group acting on the base manifold.
7.2. Manifolds with Boundaries
7.3. Constrained Quantization
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- DasGupta, A. Asymptotic Theory of Statistics and Probability; Springer Texts in Statistics; Springer: New York, NY, USA, 2008. [Google Scholar]
- Graf, S.; Luschgy, H. Foundations of Quantization for Probability Distributions; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Chern, S.; Smith, F.; de Rham, G. Differentiable Manifolds: Forms, Currents, Harmonic Forms; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Willmore, T. Riemannian Geometry; Oxford Science Publications, Clarendon Press: Oxfordshire, UK, 1996. [Google Scholar]
- Mardia, K.V. Statistics of Directional Data. J. R. Stat. Soc. Ser. B (Methodol.) 1975, 37, 349–393. [Google Scholar] [CrossRef]
- Mardia, K.; Jupp, P. Directional Statistics; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Golub, G.; Van Loan, C. Matrix Computations; Johns Hopkins Studies in the Mathematical Sciences; Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Chikuse, Y. Statistics on Special Manifolds; Lecture Notes in Statistics; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Pennec, X. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. J. Math. Imaging Vis. 2006, 25, 127–154. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, O. Hyperbolic Distributions and Distributions on Hyperbolae. Scand. J. Stat. 1978, 5, 151–157. [Google Scholar]
- Gruet, J.C. A Note on Hyperbolic von Mises Distributions. Bernoulli 2000, 6, 1007–1020. [Google Scholar] [CrossRef]
- Said, S.; Bombrun, L.; Berthoumieu, Y.; Manton, J.H. Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices. IEEE Trans. Inf. Theory 2017, 63, 2153–2170. [Google Scholar] [CrossRef] [Green Version]
- Said, S.; Hajri, H.; Bombrun, L.; Vemuri, B.C. Gaussian Distributions on Riemannian Symmetric Spaces: Statistical Learning with Structured Covariance Matrices. IEEE Trans. Inf. Theory 2018, 64, 752–772. [Google Scholar] [CrossRef]
- Terras, A. Harmonic Analysis on Symmetric Spaces and Applications I; Springer: New York, NY, USA, 2012. [Google Scholar]
- Duistermaat, J.; Kolk, J. Lie Groups; Universitext; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Knapp, A.W. Lie Groups Beyond an Introduction; Progress in Mathematics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Helgason, S. Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions; Mathematical Surveys And Monographs; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Jones, T.H.; Kucerovsky, D. Heat Kernel for Simply-Connected Riemann Surfaces. arXiv, 2010; arXiv:1007.5467. [Google Scholar]
- McKean, H.P. An upper bound to the spectrum of Δ on a manifold of negative curvature. J. Differ. Geom. 1970, 4, 359–366. [Google Scholar] [CrossRef]
- Nicol, F.; Puechmorel, S. Von Mises-Like Probability Density Functions on Surfaces. In Geometric Science of Information; Nielsen, F., Barbaresco, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 701–708. [Google Scholar]
- Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186–207. [Google Scholar] [CrossRef] [Green Version]
- Barbaresco, F. Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics. Entropy 2014, 16, 4521–4565. [Google Scholar] [CrossRef] [Green Version]
- Casalis, M. Familles Exponentielles Naturelles sur Rd Invariantes par un Groupe. Int. Stat. Rev. 1991, 59, 241–262. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.; Blæsild, P.; Jensen, J.L.; Jørgensen, B. Exponential Transformation Models. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1982, 379, 41–65. [Google Scholar] [CrossRef]
- Souriau, J.; Cushman, R.; Vries, C.; Tuynman, G. Structure of Dynamical Systems: A Symplectic View of Physics; Progress in Mathematics; Springer Science + Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Besicovitch, A. Almost Periodic Functions; Dover Edition; Dover Publications: Dover, DE, USA, 1954. [Google Scholar]
- Hendriks, H. Nonparametric Estimation of a Probability Density on a Riemannian Manifold Using Fourier Expansions. Ann. Stat. 1990, 18, 832–849. [Google Scholar] [CrossRef]
- Burago, D.; Ivanov, S.; Kurylev, Y. A graph discretization of the Laplace–Beltrami operator. J. Spectr. Theory 2014, 4, 675–714. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.T. Deconvolution density estimation on SO(N). Ann. Stat. 1998, 26, 1083–1102. [Google Scholar] [CrossRef]
- Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Rosenblatt, M. Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Stat. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Buhmann, M. Radial Basis Functions: Theory and Implementations; Cambridge Monographs on Applied and Computational Mathematics; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Pelletier, B. Kernel density estimation on Riemannian manifolds. Stat. Probab. Lett. 2005, 73, 297–304. [Google Scholar] [CrossRef]
- Berger, M.; Gauduchon, P.; Mazet, E. Le Spectre d’une Variete Riemannienne; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar]
- Bentley, J.L. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 1975, 18, 509–517. [Google Scholar] [CrossRef]
- Pagès, G. Introduction to vector quantization and its applications for numerics. ESAIM Proc. Surv. 2015, 48, 29–79. [Google Scholar] [CrossRef] [Green Version]
- Fréchet, M. Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 1948, 10, 215–310. (In French) [Google Scholar]
- Le Brigant, A.; Puechmorel, S. Optimal Riemannian quantization with an application to air traffic analysis. arXiv, 2018; arXiv:1806.07605. [Google Scholar]
- Iacobelli, M. Asymptotic quantization for probability measures on Riemannian manifolds. ESAIM Control Optim. Calculus Var. 2016, 22, 770–785. [Google Scholar] [CrossRef] [Green Version]
- Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J.M.; Perona, I. An extensive comparative study of cluster validity indices. Pattern Recognit. 2013, 46, 243–256. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A. Lectures on Symplectic Geometry; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Joyce, D. On Manifolds with Corners; Advances in Geometric Analysis, International Press: Boston, MA, USA, 2012; Volume 21, pp. 225–258. [Google Scholar]
- Kämpke, T. Constrained quantization. Signal Process. 2003, 83, 1839–1858. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
le Brigant, A.; Puechmorel, S. Approximation of Densities on Riemannian Manifolds. Entropy 2019, 21, 43. https://doi.org/10.3390/e21010043
le Brigant A, Puechmorel S. Approximation of Densities on Riemannian Manifolds. Entropy. 2019; 21(1):43. https://doi.org/10.3390/e21010043
Chicago/Turabian Stylele Brigant, Alice, and Stéphane Puechmorel. 2019. "Approximation of Densities on Riemannian Manifolds" Entropy 21, no. 1: 43. https://doi.org/10.3390/e21010043
APA Stylele Brigant, A., & Puechmorel, S. (2019). Approximation of Densities on Riemannian Manifolds. Entropy, 21(1), 43. https://doi.org/10.3390/e21010043