Non-Equilibrium Liouville and Wigner Equations: Classical Statistical Mechanics and Chemical Reactions for Long Times
Abstract
:1. Introduction
2. Open Classical One Particle Systems
2.1. One-Dimensional Case: Some General Aspects
2.2. 3-Term Hierarchy and Operator-Continued Fractions
2.3. Properties of
2.4. An Approximate Ansatz for Equation (8), for Large n
2.5. Long-Term Approximation
3. Closed Classical Many-Particle Systems: Long-Term Approximation and Arrow of Time
3.1. Initial State Motivated by Fluid Dynamics, Hierarchy, and Continued Fractions
3.2. Long-Term Approximation, Irreversibility, Liapunov Function and BBGKY Hierarchy
4. Quantum Particles: One Particle
4.1. General Aspects
4.2. Novel Features: as Quasi-Definite Functional in Momentum and Orthogonal Polynomials
4.3. Non-Equilibrium Moments and Hierarchy
5. (>1) Quantum Particles: Equilibrium and Non-Equilibrium Statistical Distributions
5.1. General Aspects and Factoring Out the Center of Mass
5.2. Orthogonal Polynomials, Non-Equilibrium Moments and Hierarchy
5.3. Approximations: Small Thermal Wavelength and Long-Term
6. = 2 Quantum Particles: Chemical Reactions
6.1. Assumptions on Two-Body Potential and Non-Equilibrium Moments and Hierarchy
- is repulsive () for (“hard core”, with adequately small ), attractive () in the interval and vanishes fast as .
- is finite everywhere and its magnitude is appreciable in . a is understood to be the range of v.
- and all , for , are continuous for all . Recall Section 4.1 and Section 5.1.
- does give rise to only one bound state (bound spectrum). Thus, the relevance of the region where is larger than that of the hard core.
6.2. Chemical Reactions: Assumptions, Order of Magnitude Estimates and Approximations
6.3. Approximate Equation for Lowest Non-Equilibrium Moment
6.4. Comparison: Binary Chemical Reactions in Classical Statistical Mechanics
7. = 3 Quantum Particles: Chemical Reactions
7.1. Some General Aspects
7.2. Approximate Equation for Lowest Non-Equilibrium Moment
7.3. Comparison: Particles in Classical Statistical Mechanics
7.4. Thermal and Chemical Equilibria: An Approximate (Semi-Quantitative) Discussion
8. Conclusions and Discussion
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Formulae for N = 2 Particles
Appendix B. Formulae for N = 3 Particles
References
- Wallace, D. Reading List for Advanced Philosophy of Physics: The Philosophy of Statistical Mechanics. Available online: https://www.physics.umd.edu/courses/Phys603/einsteinsp12/References/StatMechPhilosophyReading.pdf (accessed on 14 Feburary 2019).
- Balescu, R. Equilibrium and Nonequilibrium Statistical Mechanics; John Wiley and Sons: New York, NY, USA, 1975. [Google Scholar]
- Penrose, O. Foundations of statistical Mechanics. Rep. Prog. Phys. 1979, 42, 1937–2006. [Google Scholar] [CrossRef]
- Huang, K. Statistical Mechanics, 2nd ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1987. [Google Scholar]
- McQuarrie, D.A. Statistical Thermodynamics; Harper and Row Pub.: New York, NY, USA, 1973. [Google Scholar]
- Munster, A. Statistical Thermodynamics; Springer: Berlin, Germany, 1969; Volume 1. [Google Scholar]
- Kreuzer, H.J. Nonequilibrium Thermodynamics and its Statistical Foundations; Clarendon Press: Oxford, UK, 1981. [Google Scholar]
- Liboff, R.L. Kinetic Theory, 2nd ed.; John Wiley (Interscience): New York, NY, USA, 1998. [Google Scholar]
- Zubarev, D.; Morozov, V.G.; Röpke, G. Statistical Mechanics of Nonequilibrium Processes; Akademie: Berlin, Germany, 1996; Volume I. [Google Scholar]
- Risken, H. The Fokker-Planck Equation, 2nd ed.; Springer: Berlin, Germany, 1989. [Google Scholar]
- Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Coffey, W.T.; Kalmykov, Y.P. The Langevin Equation, 3rd ed.; World Scientific: Singapore, 2012. [Google Scholar]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely positive semigroups of N-level systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Gardiner, C.W.; Zoller, P. Quantum Noise, 3rd ed.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Kosloff, R. Quantum Thermodynamics. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Weiss, U. Quantum Dissipative Systems, 3rd ed.; World Scientific: Singapore, 2008. [Google Scholar]
- Rivas, A.; Huelga, S.F. Open Quantum Systems. An Introduction; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Lebon, G.; Jou, D.; Casas-Vazquez, J. Understanding Non-Equilibrium Thermodynamics; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Gyftopoulos, E.P.; Beretta, G.P. Thermodynamics. Foundations and Applications; Dover Pub. Inc.: New York, NY, USA, 2005. [Google Scholar]
- Santillan, M. Chemical Kinetics, Stochastic Processes and Irreversible Thermodynamics; Lecture Notes on Mathematical Modelling in the Life Sciences; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Brinkman, H.C. Brownian motion in a field of force and the diffusion theory of chemical reactions. Physica 1956, 22, 29–34. [Google Scholar] [CrossRef]
- Garcia-Palacios, J.L.; Zueco, D. The Caldeira-Leggett quantum master equation in Wigner phase space: Continued-fraction solutions and applications to Brownian motion in periodic potentials. J. Phys. A Math. Gen. 2004, 37, 10735–10770. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. New hierarchy for the Liouville equation, irreversibility and Fokker-Planck-like structures. Ann. Phys. (Leipzig) 2002, 11, 357–385. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Liouville and Fokker-Planck dynamics for classical plasmas and radiation. Ann. Phys. (Leipzig) 2006, 15, 379–415. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Nonequilibrium quasi-classical effective meson gas: Thermalization. Eur. Phys. J. A 2007, 31, 761–765. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Brownian motion, quantum corrections and a generalization of the Hermite polynomials. J. Comput. Appl. Math. 2010, 233, 1453–1461. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Quantum Brownian motion and generalizations of the Hermite polynomials. J. Comput. Appl. Math. 2011, 236, 7–18. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Classical systems: Moments, continued fractions, long-time approximations and irreversibility. In Nonequilibrium Statistical Physics Today: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics; Garrido, P.L., Marro, J., de los Santos, F., Eds.; American Institute of Physics: College Park, MD, USA, 2011; Volume 1332, pp. 261–262. [Google Scholar]
- Alvarez-Estrada, R.F. Classical and quantum models in non-equilibrium statistical mechanics: Moment methods and long-time approximations. Entropy 2012, 14, 291–322. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Non-Equilibrium Liouville and Wigner equations: Moment methods and long-time approximations. Entropy 2014, 16, 1426–1461. [Google Scholar] [CrossRef]
- Calvo, G.F.; Alvarez-Estrada, R.F. The time duration for DNA thermal denaturation. J. Phys. Condens. Matter 2008, 20, 035101. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F.; Calvo, G.F. Chemical Reactions using a non-equilibrium Wigner function approach. Entropy 2016, 18, 369–398. [Google Scholar] [CrossRef]
- Hochstrasser, U.W. Orthogonal polynomials. In Handbook of Mathematical Functions; Abramowitz, M., Stegun, I.A., Eds.; Dover: New York, NY, USA, 1965. [Google Scholar]
- Gautschi, W. Error functions and Fresnel integrals. In Handbook of Mathematical Functions; Abramowitz, M., Stegun, I.A., Eds.; Dover: New York, NY, USA, 1965. [Google Scholar]
- Penrose, O.; Coveney, P.V. Is there a “canonical” non-equilibrium ensemble? Proc. R. Soc. Lond. 1994, A447, 631–646. [Google Scholar] [CrossRef]
- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University Press: Oxford, UK, 1988. [Google Scholar]
- Maes, C. Nonequilibrium entropies. Phys. Scr. 2012, 86, 058509. [Google Scholar] [CrossRef]
- Tasaki, H. From quantum dynamics to the canonical distribution: General picture and a rigorous example. Phys. Rev. Lett. 1998, 80, 1373–1376. [Google Scholar] [CrossRef]
- Goldstein, S.; Lebowitz, J.; Tumulka, R.; Zanghi, N. Canonical typicality. Phys. Rev. Lett. 2006, 96, 050403. [Google Scholar] [CrossRef]
- Linden, N.; Popescu, S.; Short, A.J.; Winter, A. Quantum mechanical evolution towards thermal equilkibrium. Phys. Rev. E 2009, 79, 061103. [Google Scholar] [CrossRef]
- Reimann, P. Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 2008, 101, 190403. [Google Scholar] [CrossRef] [PubMed]
- Reimann, P. Canonical thermalization. New J. Phys. 2010, 12, 055027. [Google Scholar] [CrossRef]
- Short, A.J. Equilibration of quantum systems and subsystems. New J. Phys. 2011, 13, 053009. [Google Scholar] [CrossRef]
- Short, A.J.; Farrelly, T.C. Quantum equilibration in finite time. New J. Phys. 2012, 14, 013063. [Google Scholar] [CrossRef]
- Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics—A topical review. J. Phys. A Math. Theor. 2016, 49, 143001. [Google Scholar] [CrossRef]
- Wigner, E.P. On the quantum correction for thermodynamic equilibvrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. [Google Scholar] [CrossRef]
- Zakos, C.K.; Fairlie, D.B.; Curtwright, T. Quantum Mechanics in Phase Space. An Overview with Selected Papers; World Sci. Pub.: Singapore, 2005. [Google Scholar]
- Coffey, W.T.; Kalmykov, Y.P.; Titov, S.V.; Mulligan, B.P. Wigner function approach to the quantum Brownian motion of a particle in a potential. Phys. Chem. Chem. Phys. 2007, 9, 3361–3382. [Google Scholar] [CrossRef]
- Schleich, W.P. Quantum Opt. Phase Space; Wiley VCH: Berlin, Germany, 2001. [Google Scholar]
- Hudson, R.L. When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 1974, 6, 249–252. [Google Scholar] [CrossRef]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Gordon and Breach: New York, NY, USA, 1978. [Google Scholar]
- Haengi, P.; Talkner, P.; Borkovec, M. Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 1990, 62, 251–342. [Google Scholar] [CrossRef]
- Newton, R.G. Scattering Theory of Waves and Particles; Dover: New York, NY, USA, 2002. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Estrada, R.F. Non-Equilibrium Liouville and Wigner Equations: Classical Statistical Mechanics and Chemical Reactions for Long Times. Entropy 2019, 21, 179. https://doi.org/10.3390/e21020179
Álvarez-Estrada RF. Non-Equilibrium Liouville and Wigner Equations: Classical Statistical Mechanics and Chemical Reactions for Long Times. Entropy. 2019; 21(2):179. https://doi.org/10.3390/e21020179
Chicago/Turabian StyleÁlvarez-Estrada, Ramon F. 2019. "Non-Equilibrium Liouville and Wigner Equations: Classical Statistical Mechanics and Chemical Reactions for Long Times" Entropy 21, no. 2: 179. https://doi.org/10.3390/e21020179
APA StyleÁlvarez-Estrada, R. F. (2019). Non-Equilibrium Liouville and Wigner Equations: Classical Statistical Mechanics and Chemical Reactions for Long Times. Entropy, 21(2), 179. https://doi.org/10.3390/e21020179