On the Calculation of the Effective Polytropic Index in Space Plasmas
Abstract
:1. Introduction
2. Model
2.1. Density and Temperature Data-Points
2.2. Density and Temperature Uncertainties
3. Analysis
4. Results
5. Application to Solar Wind Protons
6. Discussion
6.1. Uncertainty Threasholds
6.2. Correlation Coefficient Filter
6.3. Proposed Approach Cased on the Special Polytropic Index V
7. Summary and Conclusions
- Density measurement uncertainties shift the estimated polytropic index towards 1. For density uncertainties comparable with the range of density variation during the analyzed intervals, the linear fit cannot resolve any real expansion or compression of the plasma and returns artificial isothermal relation;
- Temperature measurement uncertainties introduce statistical error in the calculation of the polytropic index;
- The correlation coefficient drops drastically as the plasma measurement uncertainties increase, therefore, it can be used as a potential criterion to filter erroneous data. Nevertheless, such a criterion will also exclude real, nearly isothermal cases;
- When using standard least square fitting, we can filter erroneous data by calculating the special polytropic index ν and exclude intervals for which ν differs significantly from its definition value . We demonstrated our suggested approach using the solar wind proton measurements by Wind in 2002.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Parker, E.N. Interplanetary Dynamical Processes; Wiley-Interscience: Hoboken, NJ, USA, 1963. [Google Scholar]
- Chandrasekhar, S. An Introduction to the Study of Stellar Structure; Dover Publications: New York, NY, USA, 1967. [Google Scholar]
- Livadiotis, G. Superposition of polytropic in the inner heliosheath. Astrophys. J. Suppl. Ser. 2016, 223, 1–13. [Google Scholar] [CrossRef]
- Nicolaou, G.; Livadiotis, G. Modeling the plasma flow in the inner heliosheath with a spatially varying compression ratio. Astrophys. J. 2017, 838, 7. [Google Scholar] [CrossRef]
- Totten, T.L.; Freeman, J.W.; Arya, S. An empirical determination of the polytropic index for the free-streaming solar wind using Helios 1 data. J. Geophys. Res. 1995, 100, 13–17. [Google Scholar] [CrossRef]
- Osherovich, V.A.; Fainberg, J.; Stone, R.G. Multi-tube model for interplanetary magnetic clouds. Geophys. Res. Lett. 1999, 26, 401–404. [Google Scholar] [CrossRef]
- Gosling, J.T. On the determination of electron polytrope indices within coronal mass ejections in the solar wind. J. Geophys. Res. 1999, 104, 19851–19857. [Google Scholar] [CrossRef] [Green Version]
- Spreiter, J.R.; Stahara, S.S. Gasdynamic and magnetohydrodynamic modeling of the magnetosheath: A tutorial. Adv. Space Res. 1994, 14, 5–19. [Google Scholar] [CrossRef]
- Parker, E.N. The stellar-wind regions. Astrophys. J. 1961, 134, 20–26. [Google Scholar] [CrossRef]
- Livadiotis, G. Shock strength in space and astrophysical plasmas. Astrophys. J. 2015, 809, 111. [Google Scholar] [CrossRef]
- Scherer, K.; Fichtner, H.; Fahr, H.J.; Röken, C.; Kleimann, J. Generalized multi-polytropic Rankine-Hugoniot relations and the entropy conditions. Astrophys. J. 2016, 833, 38–48. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, B.; Baloković, M.; Barrett, J. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett. 2019, 875, L5. [Google Scholar]
- Bruno, R.; Carbone, V. The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2013, 4, 1–187. [Google Scholar] [CrossRef]
- Livadiotis, G. Using kappa distributions to identify the potential energy. J. Geophys. Res. 2018, 123, 1050–1060. [Google Scholar] [CrossRef]
- Livadiotis, G. On the polytropic behavior in space and astrophysical plasma. Astrophys. J. 2019, 874, 10–18. [Google Scholar] [CrossRef]
- Nicolaou, G.; Livadiotis, G. Long term correlations of polytropic indices with kappa distributions in solar wind plasma near 1 au. Astrophys. J. 2019, 884, 52. [Google Scholar] [CrossRef]
- Newbury, J.A.; Russel, C.T.; Lindsay, G.M. Solar wind polytropic index in the vicinity of stream interactions. Geophys. Res. Lett. 1997, 24, 1431–1434. [Google Scholar] [CrossRef]
- Kartalev, M.; Dryer, M.; Grigorov, K.; Stoimenova, E. Solar wind polytropic index estimates based on single spacecraft plasma and interplanetary field measurements. J. Geophys. Res. 2006, 111, A10107. [Google Scholar] [CrossRef]
- Osherovich, V.A.; Farrugia, L.F.; Burlaga, L.F.; Lepping, R.P.; Fainberg, J.; Stone, R.G. Polytropic relation in interplanetary clouds. J. Geophys. Res. 1993, 98, 15331–15342. [Google Scholar] [CrossRef]
- Pang, X.; Cao, J.; Liu, W.; Ma, Y.; Lu, H.; Yang, J.; Li, L.; Liu, X.; Wang, J.; Wang, T.; et al. Polytropic index of central plasma sheet ions based on MHD Bernoulli integral. J. Geophys. Res. 2015, 120, 4736–4747. [Google Scholar] [CrossRef]
- Park, J.-S.; Shue, J.-H.; Nariyuki, Y.; Kartalev, M. Dependence of thermodynamic processes on upstream interplanetary magnetic field conditions for magnetosheath ions. J. Geophys. Res. 2019, 124, 1866–1882. [Google Scholar] [CrossRef]
- Roussev, I.I.; Gombosi, T.I.; Sokolov, I.V.; Velli, M.; Manchester, W.; DeZeeuw, D.L.; Liewer, P.; Tόth, G.; Luhmann, J. A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys. J. 2003, 595, 57–61. [Google Scholar] [CrossRef]
- Meister, C.-V.; Maurer, C.; Hoffmann, D.H.H. Effective polytropic indices of anisotropic magnetosheath plasmas with magnetoacoustic waves. Contrib. Plasma Phys. 2011, 51, 639–649. [Google Scholar] [CrossRef]
- Nicolaou, G.; Livadiotis, G.; Moussas, X. Long-term variability of the polytropic index of solar wind protons at 1 AU. Sol. Phys. 2014, 289, 1371–1378. [Google Scholar] [CrossRef]
- Livadiotis, G.; Desai, M.I. Plasma-field coupling at small length scales in solar wind near 1 au. Astrophys. J. 2016, 829, 88. [Google Scholar] [CrossRef]
- Livadiotis, G. Long-term independence of solar wind polytropic index on plasma flow speed. Entropy 2018, 20, 799. [Google Scholar] [CrossRef]
- Schwenn, R. Large-Scale Structure of the Interplanetary Medium, in Physics of the Inner Heliosphere; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1990; Volume 1. [Google Scholar]
- Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.P.; Krimigis, S.M.; Kane, M.; Mitchell, D.G.; Hamilton, D.C.; Krupp, N.; Carbary, J.F. Energetic ion moments and polytropic index in Saturn’s magnetosphere using Cassini/MIMI measurements: A simple model based on κ-distribution functions. J. Geophys. Res. 2018, 123, 8066–8086. [Google Scholar] [CrossRef]
- Arridge, C.S.; McAndrews, H.J.; Jackman, C.M.; Forsyth, C.; Walsh, A.P.; Sittler, E.C.; Gilbertab, L.K.; Lewisab, G.R.; Russellf, C.T.; Coates, A.J.; et al. Plasma electrons in Saturn’s magnetotail: Structure, distribution and energisation. Planet. Space Sci. 2009, 57, 2032–2047. [Google Scholar] [CrossRef]
- Nicolaou, G.; McComas, D.J.; Bagenal, F.; Elliott, H.A. Properties of plasma ions in the distant Jovian magnetosheath using Solar Wind Around Pluto data on New Horizons. J. Geophys. Res. 2014, 119, 3463–3479. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J.; Schwadron, N.A.; Funsten, H.O.; Fuselier, S.A. Pressure of the proton plasma in the inner heliosheath. Astrophys. J. 2013, 762, 134. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Non-equilibrium thermodynamic processes: Space plasmas and the inner heliosheath. Astrophys. J. 2012, 749, 11. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Fitting method based on correlation maximization: Applications in Astrophysics. J. Geophys. Res 2013, 118, 2863–2875. [Google Scholar] [CrossRef]
- Nicolaou, G.; Verscharen, D.; Wicks, R.T.; Owen, C.J. The Impact of Turbulent Solar Wind Fluctuations on Solar Orbiter Plasma Proton Measurements. Astrophys. J. 2019, in press. [Google Scholar]
- Kasper, J.C.; Lazarus, A.J.; Steinberg, J.T.; Ogilvie, K.W.; Szabo, A. Physics-based tests to identify the accuracy of solar wind ion measurements: A case study with the Wind Faraday Cups. J. Geophys. Res. 2006, 111, A03105. [Google Scholar] [CrossRef]
- Veselovsky, I.S.; Dmitriev, A.V.; Suvorova, A.V. Algebra and statistics of the solar wind. Cosmic Res. 2010, 48, 113. [Google Scholar] [CrossRef]
- Venzmer, M.S.; Bothmer, V. Solar-wind predictions for the Parker Solar Probe orbit: Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations. Astron. Astrophys. 2018, 611, A36. [Google Scholar] [CrossRef]
- Ogilvie, K.W.; Chornay, D.J.; Fritzenreiter, R.J.; Hunsaker, F.; Keller, J.; Miller, G.; Scudder, J.D.; Sittler, E.C.; Torbert, R.B.; Bodet, D.; et al. SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci. Rev. 1995, 71, 55–77. [Google Scholar] [CrossRef]
- Kasper, J. Solar Wind Plasma: Kinetic Properties and Micro-Instabilities. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2003. [Google Scholar]
- Lepping, R.P.; Acũna, M.H.; Burlaga, L.F.; Farrel, W.M.; Slavin, J.A.; Schatten, K.H.; Mariani, F.; Ness, N.F.; Neubauer, F.M.; Whang, Y.C.; et al. The WIND magnetic field investigation. Space Sci. Rev. 1995, 71, 207–229. [Google Scholar] [CrossRef]
- Livadiotis, G. Linear Regression with Optimal Rotation. Stats 2019, 2, 416–425. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolaou, G.; Livadiotis, G.; Wicks, R.T. On the Calculation of the Effective Polytropic Index in Space Plasmas. Entropy 2019, 21, 997. https://doi.org/10.3390/e21100997
Nicolaou G, Livadiotis G, Wicks RT. On the Calculation of the Effective Polytropic Index in Space Plasmas. Entropy. 2019; 21(10):997. https://doi.org/10.3390/e21100997
Chicago/Turabian StyleNicolaou, Georgios, George Livadiotis, and Robert T. Wicks. 2019. "On the Calculation of the Effective Polytropic Index in Space Plasmas" Entropy 21, no. 10: 997. https://doi.org/10.3390/e21100997
APA StyleNicolaou, G., Livadiotis, G., & Wicks, R. T. (2019). On the Calculation of the Effective Polytropic Index in Space Plasmas. Entropy, 21(10), 997. https://doi.org/10.3390/e21100997