High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application
Abstract
:1. Introduction
1.1. Thermoelectric Parameters
1.2. Doping and Band Structure Engineering
1.3. Thermoelectric Materials for High-Temperature Applications
2. Oxides and Oxyselenides
2.1. Thermoelectric Oxides
2.1.1. p-Type Layered Cobaltites
2.1.2. n-Type Oxides
2.2. BiCuSeO
2.3. Comparison of Oxides and Oxyselenides
3. Metals and Intermetallics
3.1. Zintl Phases
3.1.1. p-Type Zintl Phases
3.1.2. n-Type Zintl Phases
3.1.3. Comparison of Zintl phases
3.2. Heusler and Half-Heusler Compounds
3.2.1. p-Type Half-Heusler Compounds
3.2.2. n-Type Half-Heusler Compounds
3.2.3. Comparison of Half-Heusler Compounds
3.3. SiGe Alloys
4. Comparison of High-Temperature Thermoelectric Materials
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, J.; Tritt, T.M. Advances in Thermoelectric Materials Research: Looking Back and Moving Forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed]
- Energy Flow Chart U.S. 2017; Technical Report; Lawrence Livermore National Laboratory (LLNL) and the Departement of Energy: Livermore, CA, USA, 2018.
- Kishore, R.A.; Marin, A.; Wu, C.; Kumar, A.; Priya, S. Energy Harvesting—Materials, Physics, and System Design with Practical Examples; DEStech Publications: Lancaster, PA, USA, 2019. [Google Scholar]
- Goldsmid, H.J. Introduction to Thermoelectricity; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ioffe, A.F. Semiconductor Thermoelements, and Thermoelectric Cooling, 1st ed.; Info-search Ltd.: London, UK, 1957. [Google Scholar]
- Snyder, G.J.; Toberer, E. Complex Thermoelectric Materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ren, Z. Recent Progress of half-Heusler for Moderate Temperature Thermoelectric Applications. Mater. Today 2013, 16, 387–395. [Google Scholar] [CrossRef]
- Shuai, J.; Mao, J.; Song, S.; Zhang, Q.; Chen, G.; Ren, Z. Recent Progress and Future Challenges on Thermoelectric Zintl Materials. Mater. Today Phys. 2017, 1, 74–95. [Google Scholar] [CrossRef]
- Yin, Y.; Tudu, B.; Tiwari, A. Recent Advances in Oxide Thermoelectric Materials and Modules. Vacuum 2017, 146, 356–374. [Google Scholar] [CrossRef]
- Bittner, M.; Kanas, N.; Hinterding, R.; Steinbach, F.; Groeneveld, D.; Wemhoff, P.; Wiik, K.; Einarsrud, M.A.; Feldhoff, A. Triple-phase Ceramic 2D Nanocomposite with Enhanced Thermoelectric Properties. J. Eur. Ceram. Soc. 2019, 39, 1237–1244. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.D.; Zhu, Y.; Liu, Y.; Li, F.; Yu, M.; Liu, D.B.; Xu, W.; Lin, Y.H.; Nan, C.-W. Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dual-Doping Approach. Adv. Energy Mater. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Zhao, L.D.; Lo, S.H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef]
- Toshima, N. Recent Progress of Organic and Hybrid Thermoelectric Materials. Synth. Met. 2017, 225, 3–21. [Google Scholar] [CrossRef]
- Wolf, M.; Menekse, K.; Mundstock, A.; Hinterding, R.; Nietschke, F.; Oeckler, O.; Feldhoff, A. Low Thermal Conductivity in Thermoelectric Oxide-Based Multiphase Composites. J. Electron. Mater. 2019, 48, 7551–7561. [Google Scholar] [CrossRef]
- Feldhoff, A. Thermoelectric Material Tensor Derived from the Onsager–de Groot–Callen Model. Energy Harvest. Syst. 2015, 2, 5–13. [Google Scholar] [CrossRef]
- Fuchs, H.U. A Direct Entropic Approach to Uniform and Spatially Continuous Dynamical Models of Thermoelectric Devices. Energy Harvest. Syst. 2014, 1, 1–18. [Google Scholar] [CrossRef]
- Job, G.; Rüffler, R. Physical Chemistry from a Different Angle, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Goupil, C.; Seifert, W.; Zabrocki, K.; Müller, E.; Snyder, G.J. Thermodynamics of Thermoelectric Phenomena and Applications. Entropy 2011, 13, 1481–1517. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, H. The Dynamics of Heat—A Unified Approach to Thermodynamics and Heat Transfer, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Bittner, M.; Kanas, N.; Hinterding, R.; Steinbach, F.; Räthel, J.; Schrade, M.; Wiik, K.; Einarsrud, M.A.; Feldhoff, A. A Comprehensive Study on Improved Power Materials for High-Temperature Thermoelectric Generators. J. Power Sources 2019, 410–411, 143–151. [Google Scholar] [CrossRef]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Allys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Bai, S.; Liu, Y.; Tang, Y.; Chen, L.; Zhao, X.; Zhu, T. Realizing High Figure of Merit in Heavy-Band p-Type half-Heusler Thermoelectric Materials. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Narducci, D. Do we Really need High Thermoelectric Figures of Merit? A Critical Appraisal to the Power Conversion Efficiency of Thermoelectric Materials. Appl. Phys. Lett. 2011, 99, 102104. [Google Scholar] [CrossRef]
- Pei, Y.; Shi, X.; Lalonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of Electronic Bands for High Performance Bulk Thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef]
- Pei, Y.; Wang, H.; Snyder, G.J. Band Engineering of Thermoelectric Materials. Adv. Mater. 2012, 24, 6125–6135. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, T.; Liu, X.; Zhao, X. Point Defect Engineering of High-Performance Bismuth-Telluride-Based Thermoelectric Materials. Adv. Funct. Mater. 2014, 24, 5211–5218. [Google Scholar] [CrossRef]
- Kanatzidis, M.G. Nanostructured Thermoelectrics: The New Paradigm? Chem. Mater. 2010, 22, 648–659. [Google Scholar] [CrossRef]
- Cook, B.A.; Kramer, M.J.; Harringa, J.L.; Han, M.K.; Chung, D.Y.; Kanatzidis, M.G. Analysis of Nanostructuring in High Figure-of-Merit Ag1−xPbmSbTe2+m Thermoelectric Materials. Adv. Funct. Mater. 2009, 19, 1254–1259. [Google Scholar] [CrossRef]
- Li, J.; Tan, Q.; Li, J.F.; Liu, D.W.; Li, F.; Li, Z.Y.; Zou, M.; Wang, K. BiSbTe-based Nanocomposites with High zT: The Effect of SiC Nanodispersion on Thermoelectric Properties. Adv. Funct. Mater. 2013, 23, 4317–4323. [Google Scholar] [CrossRef]
- Lan, Y.; Minnich, A.J.; Chen, G.; Ren, Z. Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach. Adv. Funct. Mater. 2010, 20, 357–376. [Google Scholar] [CrossRef]
- Miyazaki, K.; Kuriyama, K.; Yabuki, T. Printable Thermoelectric Device. In Proceedings of the PowerMEMS 2018 Conference, Daytona Beach, FL, USA, 4–7 December 2018. [Google Scholar]
- Biswas, K.; He, J.; Blum, I.D.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, Q.; Su, X.; Xie, H.; Shu, S.; Chen, T.; Tan, G.; Yan, Y.; Tang, X.; Uher, C.; et al. Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials. Adv. Energy Mater. 2015, 5, 1401391. [Google Scholar] [CrossRef]
- Tritt, T.M. Thermal Conductivity—Theory, Properties and Applications; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2004. [Google Scholar]
- Tan, G.; Zhao, L.D.; Kanatzidis, M.G. Rationally Designing High-Performance Bulk Thermoelectric Materials. Chem. Rev. 2016, 116, 12123–12149. [Google Scholar] [CrossRef]
- Fergus, J.W. Oxide Materials for High Temperature Thermoelectric Energy Conversion. J. Eur. Ceram. Soc. 2012, 32, 525–540. [Google Scholar] [CrossRef]
- Poon, S. Recent Advances in Thermoelectric Performance of half-Heusler Compounds. Metals 2018, 8, 989. [Google Scholar] [CrossRef]
- Cowen, L.M.; Atoyo, J.; Carnie, M.J.; Baran, D.; Schroeder, B.C. Review—Organic Materials for Thermoelectric Energy Generation. ECS J. Solid State Sci. Technol. 2017, 6, N3080–N3088. [Google Scholar] [CrossRef]
- Saini, S.; Yaddanapudi, H.S.; Tian, K.; Yin, Y.; Magginetti, D.; Tiwari, A. Terbium Ion Doping in Ca3Co4O9: A Step Towards High-Performance Thermoelectric Materials. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bathula, S.; Jayasimhadri, M.; Gahtori, B.; Singh, N.K.; Tyagi, K.; Srivastava, A.K.; Dhar, A. The Role of Nanoscale Defect Features in Enhancing the Thermoelectric Performance of p-Type Nanostructured SiGe Alloys. Nanoscale 2015, 7, 12474–12483. [Google Scholar] [CrossRef] [PubMed]
- Grebenkemper, J.H.; Klemenz, S.; Albert, B.; Bux, S.K.; Kauzlarich, S.M. Effects of Sc and Y Substitution on the Structure and Thermoelectric Properties of Yb14MnSb11. J. Solid State Chem. 2016, 242, 55–61. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Liu, W.; Ren, Z. The Bridge Between the Materials and Devices of Thermoelectric Power Generators. Energy Environ. Sci. 2017, 10, 69–85. [Google Scholar] [CrossRef]
- Snyder, G.J.; Snyder, A.H. Figure of Merit zT of a Thermoelectric Device Defined from Materials Properties. Energy Environ. Sci. 2017, 10, 2280–2283. [Google Scholar] [CrossRef]
- Tan, G.; Ohta, M.; Kanatzidis, M.G. Thermoelectric Power Generation: From New Materials to Devices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377. [Google Scholar] [CrossRef]
- He, J.; Liu, Y.; Funahashi, R. Oxide Thermoelectrics: The Challenges, Progress, and Outlook. J. Mater. Res. 2011, 26, 1762–1772. [Google Scholar] [CrossRef]
- Hicks, L.D.; Dresselhaus, M.S. Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Phys. Rev. B 1993, 47. [Google Scholar] [CrossRef]
- Terasaki, I.; Sasago, Y.; Uchinokura, K. Large Thermoelectric Power in NaCo2O4 Single Crystals. Phys. Rev. 1997, 56, 12685–12687. [Google Scholar] [CrossRef]
- Shi, X.; Chen, L.; Uher, C. Recent Advances in High-Performance Bulk Thermoelectric Materials. Int. Mater. Rev. 2016, 61, 379–415. [Google Scholar] [CrossRef]
- Zhao, L.D.; He, J.; Berardan, D.; Lin, Y.; Li, J.F.; Nan, C.W.; Dragoe, N. BiCuSeO Oxyselenides: New Promising Thermoelectric Materials. Energy Environ. Sci. 2014, 7, 2900–2924. [Google Scholar] [CrossRef]
- Zhang, X.; Chang, C.; Zhou, Y.; Zhao, L.D. BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective. Materials 2017, 10, 198. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, G.; Cui, Y.; Zhang, H.; Xiao, F.; Wang, L.; Nakano, H. High Temperature Electrical Conductivity and Thermoelectric Power of NaxCoO2. Solid State Ionics 2008, 179, 2308–2312. [Google Scholar] [CrossRef]
- Krasutskaya, N.S.; Klyndyuk, A.I.; Evseeva, L.E.; Tanaeva, S.A. Synthesis and Properties of NaxCoO2 (x = 0.55, 0.89) Oxide Thermoelectrics. Inorg. Mater. 2016, 52, 393–399. [Google Scholar] [CrossRef]
- Klyndyuk, A.I.; Krasutskaya, N.S.; Chizhova, E.A. Synthesis and Thermoelectric Properties of Ceramics based on Bi2Ca2Co1.7Oy Oxide. Glass Phys. Chem. 2018, 44, 100–107. [Google Scholar] [CrossRef]
- Sun, N.; Dong, S.T.; Zhang, B.B.; Chen, Y.B.; Zhou, J.; Zhang, S.T.; Gu, Z.B.; Yao, S.H.; Chen, Y.F. Intrinsically Modified Thermoelectric Performance of Alkaline-Earth Isovalently Substituted [Bi2AE2O4][CoO2]y Single Crystals. J. Appl. Phys. 2013, 114, 1–7. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Li, X. Effect on the Properties of Different Preparation Processes in Ca3Co4O9 Thermoelectric Material. Int. Conf. Electr. Control. Eng. 2010, 4672–4676. [Google Scholar] [CrossRef]
- Królicka, A.K.; Piersa, M.; Mirowska, A.; Michalska, M. Effect of Sol-Gel and Solid-State Synthesis Techniques on Structural, Morphological and Thermoelectric Performance of Ca3Co4O9. Ceram. Int. 2018. [Google Scholar] [CrossRef]
- Noudem, J.G.; Kenfaui, D.; Chateigner, D.; Gomina, M. Toward the Enhancement of Thermoelectric Properties of Lamellar Ca3Co4O9 by Edge-Free Spark Plasma Texturing. Scr. Mater. 2012, 66, 258–260. [Google Scholar] [CrossRef]
- Schulz, T.; Töpfer, J. Thermoelectric Properties of Ca3Co4O9 Ceramics Prepared by an Alternative Pressure-Less Sintering/Annealing Method. J. Alloy. Compd. 2016, 659, 122–126. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, B.; Fang, J.; Ang, R.; Sun, Y. Tunning of Microstructure and Thermoelectric Properties of Ca3Co4O9 Ceramics by High-Magnetic-Field Sintering. J. Appl. Phys. 2011, 110. [Google Scholar] [CrossRef]
- Bittner, M.; Helmich, L.; Nietschke, F.; Geppert, B.; Oeckler, O.; Feldhoff, A. Porous Ca3Co4O9 with Enhanced Thermoelectric Properties Derived from Sol–Gel Synthesis. J. Eur. Ceram. Soc. 2017, 37, 3909–3915. [Google Scholar] [CrossRef]
- Prasoetsopha, N.; Pinitsoontorn, S.; Kamwanna, T.; Amornkitbamrung, V.; Kurosaki, K.; Ohishi, Y.; Muta, H.; Yamanaka, S. The Effect of Cr Substitution on the Structure and Properties of Misfit-Layered Ca3Co4−xCrxO9+δ Thermoelectric Oxides. J. Alloy. Compd. 2014, 588, 199–205. [Google Scholar] [CrossRef]
- Cha, J.S.; Choi, S.; Kim, G.H.; Kim, S.; Park, K. High-Temperature Thermoelectric Properties of Sm3+-Doped Ca3Co4O9+delta Fabricated by Spark Plasma Sintering. Ceram. Int. 2018, 44, 6376–6383. [Google Scholar] [CrossRef]
- Wang, K.X.; Wang, J.; Wu, H.; Shaheen, N.; Zha, X.Y.; Gao, L.J.; Bai, H.C. Thermoelectric Properties of Lower Concentration K-Doped Ca3Co4O9 Ceramics. Chin. Phys. B 2018, 27. [Google Scholar] [CrossRef]
- Butt, S.; Xu, W.; He, W.Q.; Tan, Q.; Ren, G.K.; Lin, Y.; Nan, C.W. Enhancement of Thermoelectric Performance in Cd-Doped Ca3Co4O9 via Spin Entropy, Defect Chemistry and Phonon Scattering. J. Mater. Chem. A 2014, 2, 19479–19487. [Google Scholar] [CrossRef]
- Delorme, F.; Martin, C.F.; Marudhachalam, P.; Ovono Ovono, D.; Guzman, G. Effect of Ca Substitution by Sr on the Thermoelectric Properties of Ca3Co4O9 Ceramics. J. Alloy. Compd. 2011, 509, 2311–2315. [Google Scholar] [CrossRef]
- Hira, U.; Han, L.; Norrman, K.; Christensen, D.V.; Pryds, N.; Sher, F. High-Temperature Thermoelectric Properties of Na- and W-Doped Ca3Co4O9 System. RSC Adv. 2018, 8, 12211–12221. [Google Scholar] [CrossRef]
- Butt, S.; Liu, Y.C.; Lan, J.L.; Shehzad, K.; Zhan, B.; Lin, Y.; Nan, C.W. High-Temperature Thermoelectric Properties of La and Fe co-Doped Ca-Co-O Misfit-Layered Cobaltites Consolidated by Spark Plasma Sintering. J. Alloy. Compd. 2014, 588, 277–283. [Google Scholar] [CrossRef]
- Ito, M.; Furumoto, D. Effects of Noble Metal Addition on Microstructure and Thermoelectric Properties of NaxCo2O4. J. Alloy. Compd. 2008, 450, 494–498. [Google Scholar] [CrossRef]
- Park, K.; Choi, J.W. High-Temperature Thermoelectric Properties of Na(Co0.91Ni0.09)2O4 Fabricated by Solution Combustion Method for Power Generation. J. Nanosci. Nanotechnol. 2012, 12, 3624–3628. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Jang, K.U.; Kwon, H.C.; Kim, J.G.; Cho, W.S. Influence of Partial Substitution of Cu for Co on the Thermoelectric Properties of NaCo2O4. J. Alloy. Compd. 2006, 419, 213–219. [Google Scholar] [CrossRef]
- Nagira, T.; Ito, M.; Katsuyama, S.; Majima, K.; Nagai, H. Thermoelectric Properties of (Na1−yMy)xCo2O4(M = K, Sr, Y, Nd, Sm and Yb; Y = 0.01 − 0.35). J. Alloy. Compd. 2003, 348, 263–269. [Google Scholar] [CrossRef]
- Karakaya, G.Ç.; Özçelik, B.; Nane, O.; Sotelo, A. Improvement of Bi2Sr2Co2Oy Thermoelectric Performances by Na Doping. J. Electroceramics 2018, 2, 11–15. [Google Scholar] [CrossRef]
- Gao, F.; He, Q.; Cao, R.; Wu, F.; Hu, X.; Song, H. Enhanced Thermoelectric Properties of the Hole-Doped Bi2−xKxSr2Co2Oy Ceramics. Int. J. Mod. Phys. B 2015, 29, 1–7. [Google Scholar] [CrossRef]
- Hao, H.S.; Ye, J.Q.; Liu, Y.T.; Hu, X. High-Temperature Thermoelectric Properties of Pb- and La-Substituted Bi2Sr2Co2Oy Misfit Compounds. Adv. Mater. Res. 2010, 105–106, 336–338. [Google Scholar] [CrossRef]
- Janotti, A.; Van De Walle, C.G. Fundamentals of Zinc Oxide as a Semiconductor. Rep. Prog. Phys. 2009, 72. [Google Scholar] [CrossRef]
- Van Benthem, K.; Elsässer, C.; French, R.H. Bulk Electronic Structure of SrTiO3: Experiment and Theory. J. Appl. Phys. 2001, 90, 6156–6164. [Google Scholar] [CrossRef]
- Zhang, F.P.; Lu, Q.M.; Zhang, X.; Zhang, J.X. First Principle Investigation of Electronic Structure of CaMnO3 Thermoelectric Compound Oxide. J. Alloy. Compd. 2011, 509, 542–545. [Google Scholar] [CrossRef]
- Tsubota, T.; Ohtaki, M.; Eguchi, K.; Arai, H. Thermoelectric Properties of Al-Doped ZnO as a Promising Oxide Material for High-Temperature Thermoelectric Conversion. J. Mater. Chem. 1997, 7, 85–90. [Google Scholar] [CrossRef]
- Jood, P.; Mehta, R.J.; Zhang, Y.; Peleckis, G.; Wang, X.; Siegel, R.W.; Borca-Tasciuc, T.; Dou, S.X.; Ramanath, G. Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties. Nano Lett. 2011, 11, 4337–4342. [Google Scholar] [CrossRef] [PubMed]
- Nam, W.H.; Lim, Y.S.; Choi, S.M.; Seo, W.S.; Lee, J.Y. High-Temperature Charge Transport and Thermoelectric Properties of a Degenerately Al-Doped ZnO Nanocomposite. J. Mater. Chem. 2012, 22, 14633–14638. [Google Scholar] [CrossRef]
- Han, L.; Van Nong, N.; Zhang, W.; Hung, L.T.; Holgate, T.; Tashiro, K.; Ohtaki, M.; Pryds, N.; Linderoth, S. Effects of Morphology on the Thermoelectric Properties of Al-Doped ZnO. RSC Adv. 2014, 4, 12353–12361. [Google Scholar] [CrossRef]
- Tian, T.; Cheng, L.; Zheng, L.; Xing, J.; Gu, H.; Bernik, S.; Zeng, H.; Ruan, W.; Zhao, K.; Li, G. Defect Engineering for a Markedly Increased Electrical Conductivity and Power Factor in Doped ZnO Ceramic. Acta Mater. 2016, 119, 136–144. [Google Scholar] [CrossRef]
- Ohta, S.; Nomura, T.; Ohta, H.; Koumoto, K. High-Temperature Carrier Transport and Thermoelectric Properties of Heavily La- Or Nb-Doped SrTiO3 Single Crystals. J. Appl. Phys. 2005, 97. [Google Scholar] [CrossRef]
- Han, J.; Sun, Q.; Song, Y. Enhanced Thermoelectric Properties of La and Dy co-Doped, Sr-deficient SrTiO3 Ceramics. J. Alloy. Compd. 2017, 705, 22–27. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Li, Y.; Zhang, X.; Wang, X.; Su, W.; Li, J.; Wang, C. Enhancement of Thermoelectric Performance of Sr1−xTi0.8Nb0.2O3 Ceramics by Introducing Sr Vacancies. J. Electron. Mater. 2019, 48, 1147–1152. [Google Scholar] [CrossRef]
- Bittner, M.; Geppert, B.; Kanas, N.; Singh, S.P.; Wiik, K.; Feldhoff, A. Oxide-Based Thermoelectric Henerator for High-Temperature Application using p-Type Ca3Co4O9 and n-Type In1.95Sn0.05O3 Legs. Energy Harvest. Syst. 2016, 3, 213–222. [Google Scholar] [CrossRef]
- Yan, Y.L.; Wang, Y.X. Electronic Structure and Low Temperature Thermoelectric Properties of In24M8O48 (M = Ge4+, Sn4+, Ti4+, and Zr4+). J. Comput. Chem. 2012, 33, 88–92. [Google Scholar] [CrossRef]
- Guilmeau, E.; Brardan, D.; Simon, C.; Maignan, A.; Raveau, B.; Ovono Ovono, D.; Delorme, F. Tuning the Transport and Thermoelectric Properties of In2O3 Bulk Ceramics through Doping at In-Site. J. Appl. Phys. 2009, 106. [Google Scholar] [CrossRef]
- Colder, H.; Guilmeau, E.; Harnois, C.; Marinel, S.; Retoux, R.; Savary, E. Preparation of Ni-Doped ZnO Ceramics for Thermoelectric Applications. J. Eur. Ceram. Soc. 2011, 31, 2957–2963. [Google Scholar] [CrossRef]
- Zhang, D.B.; Zhang, B.P.; Ye, D.S.; Liu, Y.C.; Li, S. Enhanced Al/Ni Co-Doping and Power Factor in Textured ZnO Thermoelectric Ceramics Prepared by Hydrothermal Synthesis and Spark Plasma Sintering. J. Alloy. Compd. 2016, 656, 784–792. [Google Scholar] [CrossRef]
- Jung, K.H.; Hyoung Lee, K.; Seo, W.S.; Choi, S.M. An Enhancement of a Thermoelectric Power Factor in a Ga-Doped ZnO System: A Chemical Compression by Enlarged Ga Solubility. Appl. Phys. Lett. 2012, 100, 3–7. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.L.; Li, Y.; Su, W.B.; Zhu, Y.H.; Li, J.C.; Mei, L.M. Influence of Rare Earth Doping on Thermoelectric Properties of SrTiO3 Ceramics. J. Appl. Phys. 2013, 114. [Google Scholar] [CrossRef]
- Park, K.; Son, J.S.; Woo, S.I.; Shin, K.; Oh, M.W.; Park, S.D.; Hyeon, T. Colloidal Synthesis and Thermoelectric Properties of La-Doped SrTiO3 Nanoparticles. J. Mater. Chem. A 2014, 2, 4217. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Qin, X.; Li, D.; Zhang, J.; Song, C.; Wang, L. Enhanced Thermoelectric Performance of Highly Dense and Fine-Grained (Sr1−xGdx)TiO3−δ Ceramics Synthesized by Sol-Gel Process and Spark Plasma Sintering. J. Alloy. Compd. 2014, 588, 562–567. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Zou, T.; Zhang, S.; Yaer, X.; Ding, N.; Liu, C.; Miao, L.; Li, Y.; Wu, Y. High Thermoelectric Performance of Nb-Doped SrTiO3 Bulk Materials with Different Doping Levels. J. Mater. Chem. C 2015, 3, 11406–11411. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Li, X.; Li, Y.; Su, W.; Li, J.; Zhao, L.; Wang, C.; Lu, M. Enhancement of Thermoelectric Performance of Sr0.9−xNd0.1Ti0.9Nb0.1O3 Ceramics by Introducing Sr Vacancies. Phys. Status Solidi A 2018, 215. [Google Scholar] [CrossRef]
- Bocher, L.; Aguirre, M.H.; Logvinovich, D.; Shkabko, A.; Robert, R.; Trottmann, M.; Weidenkaff, A. CaMn1−xNbxO3 (x < 0.08) Perovskite-Type Phases As Promising New High-Temperature n-Type Thermoelectric Materials. Inorg. Chem. 2008, 47, 8077–8085. [Google Scholar]
- Wang, Y.; Sui, Y.; Su, W. High Temperature Thermoelectric Characteristics of Ca0.9R0.1MnO3 (R = La,Pr,Yb). J. Appl. Phys. 2008, 104. [Google Scholar] [CrossRef]
- Thiel, P.; Eilertsen, J.; Populoh, S.; Saucke, G.; Döbeli, M.; Shkabko, A.; Sagarna, L.; Karvonen, L.; Weidenkaff, A. Influence of Tungsten Substitution and Oxygen Deficiency on the Thermoelectric Properties of CaMnO3−δ. J. Appl. Phys. 2013, 114. [Google Scholar] [CrossRef]
- Seo, J.W.; Cha, J.; Won, S.O.; Park, K. Electrical Transport and Thermoelectric Properties of Ca0.8Y0.2−xDyxMnO3−δ (0 < x < 0.2). J. Am. Ceram. Soc. 2017, 100, 3608–3617. [Google Scholar] [CrossRef]
- Li, C.; Chen, Q.; Yan, Y. Effects of Pr and Yb Dual Doping on the Thermoelectric Properties of CaMnO3. Materials 2018, 11, 1807. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.D.; Berardan, D.; Pei, Y.L.; Byl, C.; Pinsard-Gaudart, L.; Dragoe, N. Bi1−xSrxCuSeO Oxyselenides as Promising Thermoelectric Materials. Appl. Phys. Lett. 2010, 97, 10–13. [Google Scholar] [CrossRef]
- Li, F.; Li, J.F.; Zhao, L.D.; Xiang, K.; Liu, Y.; Zhang, B.P.; Lin, Y.H.; Nan, C.W.; Zhu, H.M. Polycrystalline BiCuSeO Oxide as a Potential Thermoelectric Material. Energy Environ. Sci. 2012, 5, 7188–7195. [Google Scholar] [CrossRef]
- Li, J.; Sui, J.; Pei, Y.; Barreteau, C.; Berardan, D.; Dragoe, N.; Cai, W.; He, J.; Zhao, L.D. A High Thermoelectric Figure of Merit zT > 1 in Ba Heavily Doped BiCuSeO Oxyselenides. Energy Environ. Sci. 2012, 5, 8543–8547. [Google Scholar] [CrossRef]
- Feng, B.; Li, G.; Pan, Z.; Xiaoming, H.; Peihai, L.; Zhu, H.; Yawei, L.; Fan, X. Effect of Synthesis Processes on the Thermoelectric Properties of BiCuSeO Oxyselenides. J. Alloy. Compd. 2018, 754, 131–138. [Google Scholar] [CrossRef]
- Sui, J.; Li, J.; He, J.; Pei, Y.L.; Berardan, D.; Wu, H.; Dragoe, N.; Cai, W.; Zhao, L.D. Texturation Boosts the Thermoelectric Performance of BiCuSeO Oxyselenides. Energy Environ. Sci. 2013, 6, 2916–2920. [Google Scholar] [CrossRef]
- Bhaskar, A.; Lai, R.T.; Chang, K.C.; Liu, C.J. High Thermoelectric Performance of BiCuSeO Prepared by Solid State Reaction and Sol-Gel Process. Scr. Mater. 2017, 134, 100–104. [Google Scholar] [CrossRef]
- Pele, V.; Barreteau, C.; Berardan, D.; Zhao, L.; Dragoe, N. Direct Synthesis of BiCuChO-Type Oxychalcogenides by Mechanical Alloying. J. Solid State Chem. 2013, 203, 187–191. [Google Scholar] [CrossRef]
- Stampler, E.S.; Sheets, W.C.; Bertoni, M.I.; Prellier, W.; Mason, T.O.; Poeppelmeier, K.R. Temperature Driven Reactant Solubilization Synthesis of BiCuOSe. Inorg. Chem. 2008, 47, 10009–10016. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.L.; He, J.; Li, J.F.; Li, F.; Liu, Q.; Pan, W.; Barreteau, C.; Berardan, D.; Dragoe, N.; Zhao, L.D. High Thermoelectric Performance of Oxyselenides: Intrinsically Low Thermal Conductivity of Ca-Doped BiCuSeO. NPG Asia Mater. 2013, 5. [Google Scholar] [CrossRef]
- Li, F.; Wei, T.R.; Kang, F.; Li, J.F. Thermal Stability and Oxidation Resistance of BiCuSeO Based Thermoelectric Ceramics. J. Alloy. Compd. 2014, 614, 394–400. [Google Scholar] [CrossRef]
- Lan, J.L.; Liu, Y.C.; Zhan, B.; Lin, Y.H.; Zhang, B.; Yuan, X.; Zhang, W.; Xu, W.; Nan, C.W. Enhanced Thermoelectric Properties of Pb-Doped BiCuSeO Ceramics. Adv. Mater. 2013, 25, 5086–5090. [Google Scholar] [CrossRef]
- Li, F.; Wei, T.R.; Kang, F.; Li, J.F. Enhanced Thermoelectric Performance of Ca-Doped BiCuSeO in a Wide Temperature Range. J. Mater. Chem. A 2013, 1, 11942–11949. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, C.; Cao, C.; Fu, J.; Peng, L. Co-Doping for Significantly Improved Thermoelectric Figure of Merit in p-Type Bi1−2xMgxPbxCuSeO Oxyselenides. Ceram. Int. 2017, 43, 17186–17193. [Google Scholar] [CrossRef]
- Feng, B.; Li, G.; Pan, Z.; Hou, Y.; Zhang, C.; Jiang, C.; Hu, J.; Xiang, Q.; Li, Y.; He, Z.; et al. Effect of Ba and Pb Dual Doping on the Thermoelectric Properties of BiCuSeO Ceramics. Mater. Lett. 2018, 217, 189–193. [Google Scholar] [CrossRef]
- Pan, L.; Lang, Y.; Zhao, L.; Berardan, D.; Amzallag, E.; Xu, C.; Gu, Y.; Chen, C.; Zhao, L.D.; Shen, X.; et al. Realization of n-Type and Enhanced Thermoelectric Performance of p-Type BiCuSeO by Controlled Iron Incorporation. J. Mater. Chem. A 2018, 6, 13340–13349. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, D.; He, J.; Zhao, L.D. Attempting to Realize n-Type BiCuSeO. J. Solid State Chem. 2018, 258, 510–516. [Google Scholar] [CrossRef]
- Gascoin, F.; Ottensmann, S.; Stark, D.; Haïle, S.M.; Snyder, G.J. Zintl phases as thermoelectric materials: Tuned transport properties of the compounds CaxYb1-xZn2Sb2. Adv. Funct. Mater. 2005, 15, 1860–1864. [Google Scholar] [CrossRef]
- Gayner, C.; Kar, K.K. Recent Advances in Thermoelectric Materials. Prog. Mater. Sci. 2016, 83, 330–382. [Google Scholar] [CrossRef]
- Brown, S.R.; Kauzlarich, S.M.; Gascoin, F.; Snyder, G.J. Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation. Chem. Mater. 2006, 18, 1873–1877. [Google Scholar] [CrossRef]
- Toberer, E.S.; Cox, C.A.; Brown, S.R.; Ikeda, T.; May, A.F.; Kauzlarich, S.M.; Snyder, G.J. Traversing the Metal-Insulator Transition in a Zintl phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1−xAlxSb11. Adv. Funct. Mater. 2008, 18, 2795–2800. [Google Scholar] [CrossRef]
- Toberer, E.S.; Brown, S.R.; Ikeda, T.; Kauzlarich, S.M.; Snyder, G.J. High Thermoelectric Efficiency in Lanthanum Doped Yb14MnSb11. Appl. Phys. Lett. 2008, 93, 11–14. [Google Scholar] [CrossRef]
- Cox, C.A.; Brown, S.R.; Snyder, G.J.; Kauzlarich, S.M. Effect of Ca Doping on the Thermoelectric Performance of Yb14MnSb11. J. Electron. Mater. 2010, 39, 1373–1375. [Google Scholar] [CrossRef]
- Kazem, N.; Xie, W.; Ohno, S.; Zevalkink, A.; Miller, G.J.; Snyder, G.J.; Kauzlarich, S.M. High-Temperature Thermoelectric Properties of the Solid–Solution Zintl Phase Eu11Cd6Sb12−xAsx (x < 3). Chem. Mater. 2014, 26, 1393–1403. [Google Scholar] [CrossRef]
- Park, S.M.; Kim, S.J. Sr11Cd6Sb12: A New Zintl Compound with Infinite Chains of Pentagonal Tubes. J. Solid State Chem. 2004, 177, 3418–3422. [Google Scholar] [CrossRef]
- Kazem, N.; Hurtado, A.; Sui, F.; Ohno, S.; Zevalkink, A.; Snyder, J.G.; Kauzlarich, S.M. High Temperature Thermoelectric Properties of the Solid-Solution Zintl Phase Eu11Cd6−xZnxSb12. Chem. Mater. 2015, 27, 4413–4421. [Google Scholar] [CrossRef]
- Aydemir, U.; Zevalkink, A.; Ormeci, A.; Wang, H.; Ohno, S.; Bux, S.; Snyder, G.J. Thermoelectric Properties of the Zintl Phases Yb5M2Sb6 (M = Al, Ga, In). Dalton Trans. 2015, 44, 6767–6774. [Google Scholar] [CrossRef]
- Zevalkink, A.; Swallow, J.; Snyder, G.J. Thermoelectric Properties of Zn-Doped Ca5In2Sb6. Dalton Trans. 2013, 42, 9713. [Google Scholar] [CrossRef] [PubMed]
- Bobev, S.; Thompson, J.D.; Sarrao, J.L.; Olmstead, M.M.; Hope, H.; Kauzlarich, S.M. Probing the Limits of the Zintl Concept: Structure and Bonding in Rare-Earth and Alkaline-Earth Zinc-Antimonides Yb9Zn4+xSb9 and Ca9Zn4.5Sb9. Inorg. Chem. 2004, 43, 5044–5052. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, J.; Li, X.; Zhu, M.; Wu, K.C.; Tao, X.T.; Huang, B.B.; Xia, S.Q. Tuning the Thermoelectric Properties of Ca9Zn4+xSb9 by Controlled Doping on the Interstitial Structure. Chem. Mater. 2016, 28, 6917–6924. [Google Scholar] [CrossRef]
- Bux, S.K.; Zevalkink, A.; Janka, O.; Uhl, D.; Kauzlarich, S.; Snyder, J.G.; Fleurial, J.P. Glass-Like Lattice Thermal Conductivity and High Thermoelectric Efficiency in Yb9Mn4.2Sb9. J. Mater. Chem. A 2014, 2, 215–220. [Google Scholar] [CrossRef]
- Kazem, N.; Zaikina, J.V.; Ohno, S.; Snyder, G.J.; Kauzlarich, S.M. Coinage-Metal-Stuffed Eu9Cd4Sb9: Metallic Compounds with Anomalous Low Thermal Conductivities. Chem. Mater. 2015, 27, 7508–7519. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Kawamura, A.; Kovnir, K.; Kauzlarich, S.M. Yb14MgSb11and Ca14MgSb11-New Mg-Containing Zintl Compounds and their Structures, Bonding, and Thermoelectric Properties. Chem. Mater. 2015, 27, 343–351. [Google Scholar] [CrossRef]
- Tan, W.; Wu, Z.; Zhu, M.; Shen, J.; Zhu, T.; Zhao, X.; Huang, B.; Tao, X.T.; Xia, S.Q. A14MgBi11 (A = Ca, Sr, Eu): Magnesium Bismuth Based Zintl Phases as Potential Thermoelectric Materials. Inorg. Chem. 2017, 56, 10576–10583. [Google Scholar] [CrossRef]
- Toberer, E.S.; Zevalkink, A.; Crisosto, N.; Snyder, G.J. The Zintl Compound Ca5Al2Sb6 for Low-Cost Thermoelectric Power Generation. Adv. Funct. Mater. 2010, 20, 4375–4380. [Google Scholar] [CrossRef]
- Zevalkink, A.; Toberer, E.S.; Bleith, T.; Flage-Larsen, E.; Snyder, G.J. Improved Carrier Concentration Control in Zn-Doped Ca5Al2Sb6. J. Appl. Phys. 2011, 110. [Google Scholar] [CrossRef]
- Zevalkink, A.; Swallow, J.; Snyder, G.J. Thermoelectric Properties of Mn-Doped Ca5Al2Sb6. J. Electron. Mater. 2012, 41, 813–818. [Google Scholar] [CrossRef]
- Chanakian, S.; Aydemir, U.; Zevalkink, A.; Gibbs, Z.M.; Fleurial, J.P.; Bux, S.; Snyder, G.J. High Temperature Thermoelectric Properties of Zn-Doped Eu5In2Sb6. J. Mater. Chem. C 2015, 3, 10518–10524. [Google Scholar] [CrossRef]
- Lv, W.; Yang, C.; Lin, J.; Hu, X.; Guo, K.; Yang, X.; Luo, J.; Zhao, J.T. Cd Substitution in Zintl Phase Eu5In2Sb6 Enhancing the Thermoelectric Performance. J. Alloy. Compd. 2017, 726, 618–622. [Google Scholar] [CrossRef]
- Chanakian, S.; Zevalkink, A.; Aydemir, U.; Gibbs, Z.M.; Pomrehn, G.; Fleurial, J.P.; Bux, S.; Snyder, G.J. Enhanced Thermoelectric Properties of Sr5In2Sb6 via Zn-Doping. J. Mater. Chem. A 2015, 3, 10289–10295. [Google Scholar] [CrossRef]
- Wood, M.; Aydemir, U.; Ohno, S.; Snyder, G.J. Observation of Valence Band Crossing: The Thermoelectric Properties of CaZn2Sb2-CaMg2Sb2 Solid Solution. J. Mater. Chem. A 2018, 6, 9437–9444. [Google Scholar] [CrossRef]
- Zhang, H.; Baitinger, M.; Tang, M.B.; Man, Z.Y.; Chen, H.H.; Yang, X.X.; Liu, Y.; Chen, L.; Grin, Y.; Zhao, J.T. Thermoelectric Properties of Eu(Zn1−xCdx)2Sb2. Dalton Trans. 2010, 39, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Cao, Q.G.; Feng, X.J.; Tang, M.B.; Chen, H.H.; Guo, X.; Chen, L.; Grin, Y.; Zhao, J.T. Enhanced Thermoelectric Figure of Merit of Zintl Phase YbCd2−xMnxSb2 by Chemical Substitution. Eur. J. Inorg. Chem. 2011, 2011, 4043–4048. [Google Scholar] [CrossRef]
- Wang, X.J.; Tang, M.B.; Chen, H.H.; Yang, X.X.; Zhao, J.T.; Burkhardt, U.; Grin, Y. Synthesis and High Thermoelectric Efficiency of Zintl Phase YbCd2−xZnxSb2. Appl. Phys. Lett. 2009, 94, 2007–2010. [Google Scholar] [CrossRef]
- Cao, Q.; Zheng, J.; Zhang, K.; Ma, G. Thermoelectric Properties of YbCd2Sb2 Doped by Mg. J. Alloy. Compd. 2016, 680, 278–282. [Google Scholar] [CrossRef]
- Shuai, J.; Kim, H.S.; Liu, Z.; He, R.; Sui, J.; Ren, Z. Thermoelectric Properties of Zintl Compound Ca1−xNaxMg2Bi1.98. Appl. Phys. Lett. 2016, 108. [Google Scholar] [CrossRef]
- Shuai, J.; Liu, Z.; Kim, H.S.; Wang, Y.; Mao, J.; He, R.; Sui, J.; Ren, Z. Thermoelectric Properties of Bi-Based Zintl Compounds Ca1−xYbxMg2Bi2. J. Mater. Chem. A 2016, 4, 4312–4320. [Google Scholar] [CrossRef]
- Shuai, J.; Geng, H.; Lan, Y.; Zhu, Z.; Wang, C.; Liu, Z.; Bao, J.; Chu, C.W.; Sui, J.; Ren, Z. Higher Thermoelectric Performance of Zintl Phases (Eu0.5Yb0.5)1−xCaxMg2Bi2 by Band Engineering and Strain Fluctuation. Proc. Natl. Acad. Sci. USA 2016, 113, E4125–E4132. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Rajput, A.; Shukla, A.K.; Pulikkotil, J.J.; Srivastava, A.K.; Dhar, A.; Gupta, G.; Auluck, S.; Misra, D.K.; Budhani, R.C. Mg3Sb2-Based Zintl Compound: A Non-Toxic, Inexpensive and Abundant Thermoelectric Material for Power Generation. RSC Adv. 2013, 3, 8504–8516. [Google Scholar] [CrossRef]
- Zheng, C.; Hoffmann, R.; Nesper, R.; von Schnering, H.G. Site Preferences and Bond Length Differences in CaAl2Si2-Type Zintl Compounds. J. Am. Chem. Soc. 1986, 108, 1876–1884. [Google Scholar] [CrossRef]
- Shuai, J.; Wang, Y.; Kim, H.S.; Liu, Z.; Sun, J.; Chen, S.; Sui, J.; Ren, Z. Thermoelectric Properties of Na-Doped Zintl Compound: Mg3−xNaxSb2. Acta Mater. 2015, 93, 187–193. [Google Scholar] [CrossRef]
- Kim, S.; Kim, C.; Hong, Y.K.; Onimaru, T.; Suekuni, K.; Takabatake, T.; Jung, M.H. Thermoelectric Properties of Mn-Doped Mg-Sb Single Crystals. J. Mater. Chem. A 2014, 2, 12311–12316. [Google Scholar] [CrossRef]
- Chen, X.; Wu, H.; Cui, J.; Xiao, Y.; Zhang, Y.; He, J.; Chen, Y.; Cao, J.; Cai, W.; Pennycook, S.J.; et al. Extraordinary Thermoelectric Performance in n-Type Manganese Doped Mg3Sb2 Zintl: High Band Degeneracy, Tuned Carrier Scattering Mechanism and Hierarchical Microstructure. Nano Energy 2018, 52, 246–255. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Wang, Y.; Liu, H.; Zhang, J. Enhanced Thermoelectric Properties of n-Type Mg3Sb2 by Excess Magnesium and Tellurium Doping. Appl. Mater. Sci. 2019, 1800811, 1–6. [Google Scholar]
- Zhang, J.; Song, L.; Pedersen, S.H.; Yin, H.; Hung, L.T.; Brummerstedt Iversen, B. Discovery of High-Performance Low-Cost n-Type Mg3Sb2-Based Thermoelectric Materials with Multi-Valley Conduction Bands. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Shuai, J.; Ge, B.; Mao, J.; Song, S.; Wang, Y.; Ren, Z. Significant Role of Mg Stoichiometry in Designing High Thermoelectric Performance for Mg3(Sb,Bi)2-based n-Type Zintls. J. Am. Chem. Soc. 2018, 140, 1910–1915. [Google Scholar] [CrossRef]
- Shuai, J.; Mao, J.; Song, S.; Zhu, Q.; Sun, J.; Wang, Y.; He, R.; Zhou, J.; Chen, G.; Singh, D.J.; et al. Tuning the Carrier Scattering Mechanism to Effectively Improve the Thermoelectric Properties. Energy Environ. Sci. 2017, 10, 799–807. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S. Simple Rules for The Understanding of Heusler Compounds. Prog. Solid State Chem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Larson, P.; Mahanti, S.D.; Sportouch, S.; Kanatzidis, M.G. Electronic Structure of Rare-Earth Nickel Pnictides: Narrow-Gap Thermoelectric Materials. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 15660–15668. [Google Scholar] [CrossRef]
- Xia, Y.; Bhattacharya, S.; Ponnambalam, V.; Pope, A.L.; Poon, S.J.; Tritt, T.M. Thermoelectric Properties of Semimetallic (Zr, Hf)CoSb half-Heusler Phases. J. Appl. Phys. 2000, 88, 1952–1955. [Google Scholar] [CrossRef]
- Bos, J.W.G.; Downie, R.A. Half-Heusler Thermoelectrics: A Complex Class of Materials. J. Phys. Condens. Matter 2014, 26. [Google Scholar] [CrossRef]
- Poon, S.J. Half-Heusler Compounds: Promising Materials For Mid-To-High Temperature Thermoelectric Conversion. J. Phys. D Appl. Phys. 2019, 52, 493001. [Google Scholar] [CrossRef]
- Aliev, F.G.; Kozyrkov, V.V.; Moshchalkov, V.V.; Scolozdra, R.V.; Durczewski, K. Narrow Band in the Intermetallic Compounds MNiSn (M = Ti, Zr, Hf). Z. Für Phys. B Condens. Matter 1990, 80, 353–357. [Google Scholar] [CrossRef]
- Appel, O.; Cohen, S.; Beeri, O.; Shamir, N.; Gelbstein, Y.; Zalkind, S. Surface Oxidation of TiNiSn (half-Heusler) Alloy by Oxygen and Water Vapor. Materials 2018, 11, 2296. [Google Scholar] [CrossRef]
- Appel, O.; Breuer, G.; Cohen, S.; Beeri, O.; Kyratsi, T.; Gelbstein, Y.; Zalkind, S. The Initial Stage in Oxidation of ZrNiSn (half Heusler) Alloy by Oxygen. Materials 2019, 12, 1509. [Google Scholar] [CrossRef]
- He, R.; Kim, H.S.; Lan, Y.; Wang, D.; Chen, S.; Ren, Z. Investigating the Thermoelectric Properties of p-Type half-Heusler Hfx(ZrTi)1−xCoSb0.8Sn0.2 by reducing Hf concentration for power generation. RSC Adv. 2015, 4, 64711–64716. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, C.; Xia, K.; Yu, J.; Zhao, X.; Pan, H.; Felser, C.; Zhu, T. Lanthanide Contraction as a Design Factor for High-Performance Half-Heusler Thermoelectric Materials. Adv. Mater. 2018, 30, 1–7. [Google Scholar] [CrossRef]
- He, R.; Kraemer, D.; Mao, J.; Zeng, L.; Jie, Q.; Lan, Y.; Li, C.; Shuai, J.; Kim, H.S.; Liu, Y.; et al. Achieving High Power Factor and Output Power Density in p-Type half-Heuslers Nb1−xTixFeSb. Proc. Natl. Acad. Sci. USA 2016, 113, 13576–13581. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; He, R.; Mao, J.; Zhu, Q.; Li, C.; Sun, J.; Ren, W.; Wang, Y.; Liu, Z.; Tang, Z.; et al. Discovery of ZrCoBi Based half-Heuslers with High Thermoelectric Conversion Efficiency. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.; Balke, B.; Fecher, G.H.; Stryhanyuk, H.; Gloskovskii, A.; Naghavi, S.; Felser, C. Thermoelectric Properties of CoTiSb Based Compounds. J. Phys. D Appl. Phys. 2009, 42. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Q.; Wang, Y.; He, R.; Shuai, J.; Zhang, J.; Wang, C.; Ren, Z. The Effect of Sn Doping on Thermoelectric Performance of n-Type half-Heusler NbCoSb. Phys. Chem. Chem. Phys. 2017, 19, 25683–25690. [Google Scholar] [CrossRef]
- Shutoh, N.; Sakurada, S. Thermoelectric Properties of the Tix(Zr0.5Hf0.5)1−xNiSn half-Heusler Compounds. J. Alloy. Compd. 2005, 389, 204–208. [Google Scholar] [CrossRef]
- Muta, H.; Kanemitsu, T.; Kurosaki, K.; Yamanaka, S. High-Temperature Thermoelectric Properties of Nb-Doped MNiSn (M = Ti, Zr) half-Heusler Compound. J. Alloy. Compd. 2009, 469, 50–55. [Google Scholar] [CrossRef]
- Kimura, Y.; Ueno, H.; Mishima, Y. Thermoelectric Properties of Directionally Solidified half-Heusler (M0.5a,M0.5b)NiSn (Ma, Mb = Hf, Zr, Ti) Alloys. J. Electron. Mater. 2009, 38, 934–939. [Google Scholar] [CrossRef]
- Chen, L.; Gao, S.; Zeng, X.; Mehdizadeh Dehkordi, A.; Tritt, T.M.; Poon, S.J. Uncovering High Thermoelectric Figure of Merit in (Hf,Zr)NiSn half-Heusler Alloys. Appl. Phys. Lett. 2015, 107. [Google Scholar] [CrossRef]
- Wu, T.; Jiang, W.; Li, X.; Zhou, Y.; Chen, L. Thermoelectric Properties of p-Type Fe-Doped TiCoSb half-Heusler Compounds. J. Appl. Phys. 2007, 102, 1–6. [Google Scholar] [CrossRef]
- Rowe, D. CRC Handbook of Thermoelectrics; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Lin, S.; Wang, C.; Chen, H.; Huo, D.; Savvides, N.; Chen, X. Microstructure and Thermoelectric Properties of Ga-Doped SiGe Alloys Prepared by Mechanical Alloying and Induction Hot Pressing. Funct. Mater. Lett. 2013, 7, 1450008. [Google Scholar] [CrossRef]
- Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R.; Cuff, D.; Tang, M.; Dresselhaus, M.; et al. Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys. Nano Lett. 2008, 8, 4670–4674. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lin, S.; Chen, H.; Zhao, Y.; Zhao, L.; Wang, H.; Huo, D.; Chen, X. Thermoelectric Performance of Si80Ge20−xSbx Based Multiphase Alloys with Inhomogeneous Dopant Distribution. Energy Convers. Manag. 2015, 94, 331–336. [Google Scholar] [CrossRef]
- Wongprakarn, S.; Pinitsoontorn, S.; at Tanusilp, S.; Kurosaki, K. Enhancing Thermoelectric Properties of p-Type SiGe Alloy through Optimization of Carrier Concentration and Processing Parameters. Mater. Sci. Semicond. Process. 2018, 88, 239–249. [Google Scholar] [CrossRef]
- Bathula, S.; Jayasimhadri, M.; Singh, N.; Srivastava, A.K.; Pulikkotil, J.; Dhar, A.; Budhani, R.C. Enhanced Thermoelectric Figure-of-Merit in Spark Plasma Sintered Nanostructured n-Type SiGe Alloys. Appl. Phys. Lett. 2012, 101. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Agarwal, A.; Coutant, Z.A.; Hall, M.J.; Liu, J.; Liu, R.; Malhotra, A.; Norouzzadeh, P.; Öztürk, M.C.; Ramesh, V.P.; et al. Thermoelectric Silicides: A Review. Jpn. J. Appl. Phys. 2017, 56, 27. [Google Scholar] [CrossRef]
- Wang, X.; Lee, H.; Lan, Y.; Zhu, G.; Joshi, G.; Wang, D.; Yang, J.; Muto, A.; Tang, M.; Klatsky, J.; et al. Enhanced Thermoelectric Figure-of-Merit in Nanostructured n-Type Silicon Germanium Bulk Alloys. Appl. Phys. Lett. 2008, 93, 193121. [Google Scholar] [CrossRef]
- Zamanipour, Z.; Vashaee, D. Comparison of Thermoelectric Properties of p-Type Nanostructured Bulk Si0.8Ge0.2 Alloy with Si0.8Ge0.2 Composites Embedded with CrSi2 Nano-Inclusisons. J. Appl. Phys. 2012, 112, 093714. [Google Scholar] [CrossRef]
- Mackey, J.; Dynys, F.; Sehirlioglu, A. Si/Ge–WSi2 Composites: Processing and Thermoelectric Properties. Acta Mater. 2015, 98, 263–274. [Google Scholar] [CrossRef]
- Usenko, A.; Moskovskikh, D.; Korotitskiy, A.; Gorshenkov, M.; Voronin, A.; Arkhipov, D.; Lyange, M.; Isachenko, G.; Khovaylo, V. Thermoelectric Properties of n-Type Si0,8Ge0,2-FeSi2 Multiphase Nanostructures. J. Electron. Mater. 2016, 45, 3427–3432. [Google Scholar] [CrossRef]
- Wongprakarn, S.; Pinitsoontorn, S.; Tanusilp, S.A.; Kurosaki, K. The Effect of YSi2 Nanoinclusion on the Thermoelectric Properties of p-Type SiGe Alloy. Phys. Status Solidi (A) Appl. Mater. Sci. 2017, 214, 1–5. [Google Scholar] [CrossRef]
- Basu, R.; Bhattacharya, S.; Bhatt, R.; Roy, M.; Ahmad, S.; Singh, A.; Navaneethan, M.; Hayakawa, Y.; Aswal, D.K.; Gupta, S.K. Improved Thermoelectric Performance of Hot Pressed Nanostructured n-Type SiGe Bulk Alloys. J. Mater. Chem. A 2014, 2, 6922–6930. [Google Scholar] [CrossRef]
- Ahmad, S.; Singh, A.; Bohra, A.; Basu, R.; Bhattacharya, S.; Bhatt, R.; Meshram, K.N.; Roy, M.; Sarkar, S.K.; Hayakawa, Y.; et al. Boosting Thermoelectric Performance of p-Type SiGe Alloys through in-situ Metallic YSi2 Nanoinclusions. Nano Energy 2016, 27, 282–297. [Google Scholar] [CrossRef]
- Bathula, S.; Jayasimhadri, M.; Gahtori, B.; Kumar, A.; Srivastava, A.K.; Dhar, A. Enhancement in Thermoelectric Performance of SiGe Nanoalloys Dispersed with SiC Nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 25180–25185. [Google Scholar] [CrossRef] [PubMed]
- Nozariasbmarz, A.; Roy, P.; Zamanipour, Z.; Dycus, J.H.; Cabral, M.J.; LeBeau, J.M.; Krasinski, J.S.; Vashaee, D. Comparison of Thermoelectric Properties of Nanostructured Mg2Si, FeSi2, SiGe, and Nanocomposites of SiGe-Mg2Si, SiGe-FeSi2. APL Mater. 2016, 4. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Zamanipour, Z.; Norouzzadeh, P.; Krasinski, J.S.; Vashaee, D. Enhanced Thermoelectric Performance in a Metal/Semiconductor Nanocomposite of Iron Silicide/Silicon Germanium. RSC Adv. 2016, 6, 49643–49650. [Google Scholar] [CrossRef]
- Zheng, G.; Su, X.; Liang, T.; Lu, Q.; Yan, Y.; Uher, C.; Tang, X. High Thermoelectric Performance of Mechanically Robust n-Type Bi2Te3−xSex Prepared by Combustion Synthesis. J. Mater. Chem. A 2015, 3, 6603–6613. [Google Scholar] [CrossRef]
- Fu, C.; Zhu, T.; Liu, Y.; Xie, H.; Zhao, X. Band Engineering of High Performance p-Type FeNbSb Based half-Heusler Thermoelectric Materials for Figure of Merit zT > 1. Energy Environ. Sci. 2015, 8, 216–220. [Google Scholar] [CrossRef]
- Kleinke, H. New Bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides. Chem. Mater. 2010, 22, 604–611. [Google Scholar] [CrossRef]
- Nolas, G.S.; Morelli, D.T.; Tritt, T.M. Skutterudites: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications. Annu. Rev. Mater. Sci. 1999, 29, 89–116. [Google Scholar] [CrossRef]
- Shi, X.; Yang, J.; Bai, S.; Yang, J.; Wang, H.; Chi, M.; Salvador, J.R.; Zhang, W.; Chen, L.; Wong-Ng, W. On the Design of High-Efficiency Thermoelectric Clathrates Through a Systematic Cross-Substitution of Framework Elements. Adv. Funct. Mater. 2010, 20, 755–763. [Google Scholar] [CrossRef]
- Zhang, L.; Grytsiv, A.; Rogl, P.; Bauer, E.; Zehetbauer, M. High Thermoelectric Performance of Riple-Filled n-Type Skutterudites (Sr,Ba,Yb)yCo4Sb12. J. Phys. D Appl. Phys. 2009, 42. [Google Scholar] [CrossRef]
- Shi, X.; Yang, J.; Salvador, J.R.; Chi, M.; Cho, J.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L. Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit Through Separately Optimizing Electrical and Thermal Transports. J. Am. Chem. Soc. 2011, 133, 7837–7846. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, V.K.; Fedorov, M.I.; Gurieva, E.A.; Eremin, I.S.; Konstantinov, P.P.; Samunin, A.Y.; Vedernikov, M.V. Highly Effective Mg2Si1−xSnx Thermoelectrics. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 74, 2–6. [Google Scholar] [CrossRef]
- Khan, A.U.; Vlachos, N.V.; Hatzikraniotis, E.; Polymeris, G.S.; Lioutas, C.B.; Stefanaki, E.C.; Paraskevopoulos, K.M.; Giapintzakis, I.; Kyratsi, T. Thermoelectric Properties of Highly Efficient Bi-Doped Mg2Si1−x−ySnxGey Materials. Acta Mater. 2014, 77, 43–53. [Google Scholar] [CrossRef]
Material | Dopant | T/K | zT | /W cm−1 K−2 |
---|---|---|---|---|
Ca3Co4O9 | Cr [62] | 1000 K | 0.16 | 3.5 |
Sm [63] | 1000 K | 0.15 | 2.4 | |
Tb [39] | 1000 K | 0.73 | 11.5 | |
K [64] | 1000 K | 0.22 | 2.85 | |
Cd [65] | 1000 K | 0.35 | 5.25 | |
Sr [66] | 1000 K | 0.22 | 3.95 | |
Na,W codopants [67] | 1000 K | 0.21 | 2.7 | |
La,Fe codopants [68] | 1000 K | 0.32 | 4.15 | |
NCO,BCCO nanocomposite [10] | 1100 K | 0.34 | 6.08 | |
NaxCoO2 | Ag,Au [69] | 1000 K | 0.4–0.5 | 13–15 |
Ni [70] | 1073 K | - | 10.8 | |
Cu [71] | 1000 K | - | 15.5 | |
K, Sr, Y, Nd, Sm, Yb [72] | 1000 K | 0.36–0.5 | 6.8–7.3 | |
Bi2Ca2Co2O9 | Na [73] | 900 K | - | 2.1 |
K [74] | 1000 K | 0.305 | 1.92 | |
Pb,La [75] | 1000 K | - | 1.6–2.2 |
Material | Dopant | T/K | zT | /W cm−1 K−2 |
---|---|---|---|---|
ZnO | Al [79,80,81] | 1073 | 0.3–0.45 | 5–8 |
Ni [90] | 1073 | 0.09 | 5.8 | |
Al,Ni codopants [91] | 773 | 0.06 | 5.6 | |
Ga [92] | 973 | 0.25 | 12 | |
SrTiO3 | La,Nb,Sm,Gd,Dy [93] | 1073 | 0.2–0.28 | 5.5–9 |
La [94] | 973 | 0.365 | 11.6 | |
Gd [95] | 1023 | 0.37 | 10.9 | |
Nb [96] | 1023 | 0.39 | 11.3 | |
Nb,Nd codopants [97] | 1073 | 0.315 | 8.8 | |
CaMnO3 | Nb [98] | 1073 | 0.325 | 1.9 |
Dy,Ho,Er,Yb [99] | 1000 | 0.15–0.2 | 2–3.5 | |
W [100] | 1073 | 0.16 | 3.2 | |
Y,Dy codopants [101] | 800 | 0.18 | 3.1 | |
Pr,Yb codopants [102] | 973 | 0.24 | 3.3 | |
In2O3 | Sn,Al [20] | 1200 | 0.08 | 7.1 |
Ge,Mn,Zn [20] | 1200 | 0.15 | 3.6 |
Composition | Materials | Dopant | T/K | zT | /W cm−1 K−2 |
---|---|---|---|---|---|
14-1-11 | Yb14MnSb11 [121] | - | 1200 K | 1.02 | 6.1 |
Al [122] | 1200 K | 1.28 | 8.82 | ||
Sc [41] | 1200 K | 1.02 | 8.38 | ||
Y [41] | 1200 K | 1.01 | 6.85 | ||
Yb14MgSb11 [134] | - | 1200 K | 1.03 | 6.5 | |
Sr14MgBi11 [135] | - | 1200 K | 0.71 | 9.5 | |
11-6-12 | Eu11Cd6Sb12 | Zn [127] | 800 K | 0.51 | 5.55 |
As [125] | 800 K | 0.185 | 1.69 | ||
5-2-6 | Ca5Al2Sb6 | Na [136] | 1050 K | 0.605 | 4.44 |
Zn [137] | 800 K | 0.4 | 3.75 | ||
Mn [138] | 850 K | 0.42 | 4.12 | ||
Ga5In2Sb6 | Zn [129] | 950 K | 0.72 | 6.56 | |
Eu5In2Sb6 | Zn [139] | 800 K | 0.28 | 4.08 | |
Cd [140] | 850 K | 0.46 | 5.2 | ||
Sr5In2Sb6 | Zn [141] | 800 K | 0.36 | 4.13 | |
9-4+x-9 | Yb9Mn4.2Sb9 [132] | - | 1000 K | 0.74 | 4.53 |
Ca9Zn4+xSb9 | Cu [131] | 850 K | 0.71 | 6.72 | |
1-2-2 | CaZn2Sb2 | Na,Mg [142] | 800 K | 0.85 | 9.24 |
EuZn2Sb2 | Cd [143] | 650 K | 1.05 | 22.5 | |
YbCd2Sb2 | Mn [144] | 650 K | 1.13 | 10 | |
Zn [145] | 700 K | 1.22 | 19.2 | ||
Mg [146] | 650 K | 1.06 | 16.8 | ||
CaMg2Bi2 | Na [147] | 850 K | 0.88 | 12.3 | |
Yb [148] | 850 K | 0.96 | 12.2 | ||
Eu0.5−xYb0.5−xMg2Bi2 | Ca [149] | 850 K | 1.26 | 13.5 | |
Mg3Sb2 | Na [150] | 750 K | 0.58 | 4.2 |
Basis | Material | T/K | zT | /W cm−1 K−2 |
---|---|---|---|---|
Mg3Sb2 | Mg3+Sb1.99Te0.01 [155] | 700 K | 0.61 | 9.16 |
Mg3+Sb1.48Bi0.48Te0.04 [156] | 700 K | 1.59 | 12.56 | |
Mg3+Sb1.48Bi0.49Te0.01 [157] | 700 K | 1.45 | 15.14 | |
Mg3+Nb0.15Sb1.5Bi0.49Te0.01 [158] | 700 K | 1.52 | 18.5 | |
Mg3+Mn0.025Sb1.5Bi0.49Te0.01 [154] | 700 K | 1.71 | 20.02 |
Material | T/K | zT | /W cm−1 K−2 |
---|---|---|---|
FeNb0.88Hf0.12Sb [22] | 1200 K | 1.45 | 51 |
FeNb0.86Zr0.14Sb [22] | 1050 K | 0.80 | 46 |
FeNb0.95Ti0.05Sb [169] | 973 K | 0.70 | 50 |
FeNb0.8Ti0.2Sb [169] | 973 K | 1.10 | 53 |
ZrCoBi0.65Sb0.15Sn0.20 [170] | 973 K | 1.42 | 38 |
Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2 [167] | 973 K | 1 | 28 |
Material | T/K | zT | /W cm−1 K−2 |
---|---|---|---|
TiNiSn [174] | 775 K | 0.4 | 24 |
ZrNiSn [175] | 1000 K | 0.55 | 33 |
HfNiSn [175] | 1000 K | 0.48 | 35 |
Ti0.5Zr0.25Hf0.25NiSn0.998Sb0.002 [173] | 700 K | 1.50 | 62 |
Hf0.6Zr0.4Hf0.25NiSn0.995Sb0.005 [176] | 900 K | 1.20 | 47 |
NbCoSb0.8Sn0.2 [172] | 973 K | 0.56 | 21 |
TiFe0.15Co0.85Sb [177] | 850 K | 0.45 | 22 |
(Zr0.4Hf0.6)0.88Nb0.12CoSb [168] | 1173 K | 0.99 | 27 |
Composition | Dopant | Inclusion | T/K | zT | /W cm−1 K−2 |
---|---|---|---|---|---|
n-type Si80Ge20 | P [190] | - | 1073 | 1.78 | 30.3 |
P [185] | - | 1173 | 1.3 | 30.61 | |
Sb [181] | - | 1073 | 0.61 | 18.5 | |
P | SiC [192] | 1173 | 1.72 | 28.74 | |
P | Mg2Si [193] | 1173 | 1.27 | 29.84 | |
P | FeSi2 [194] | 1173 | 1.18 | 27.8 | |
P | WSi2 [187] | 1173 | 1.16 | 35.27 | |
p-type Si80Ge20 | B [40] | - | 1173 | 1.22 | 20.5 |
B [180] | - | 1073 | 0.96 | 22 | |
Ga [179] | - | 1073 | 0.52 | 15.5 | |
B | Y2O3 [191] | 1073 | 1.81 | 39.05 | |
B | CrSi2 [186] | 1073 | 0.65 | 21.25 | |
B | YSi2 [189] | 1073 | 0.53 | 16.57 | |
B | WSi2 [187] | 1173 | 0.66 | 17.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolf, M.; Hinterding, R.; Feldhoff, A. High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application. Entropy 2019, 21, 1058. https://doi.org/10.3390/e21111058
Wolf M, Hinterding R, Feldhoff A. High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application. Entropy. 2019; 21(11):1058. https://doi.org/10.3390/e21111058
Chicago/Turabian StyleWolf, Mario, Richard Hinterding, and Armin Feldhoff. 2019. "High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application" Entropy 21, no. 11: 1058. https://doi.org/10.3390/e21111058
APA StyleWolf, M., Hinterding, R., & Feldhoff, A. (2019). High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application. Entropy, 21(11), 1058. https://doi.org/10.3390/e21111058