Permutation Entropy and Statistical Complexity Analysis of Brazilian Agricultural Commodities
Abstract
:1. Introduction
2. Methodology
2.1. Permutation Entropy
2.2. Complexity Entropy Causality Plane
3. Data and Analysis
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Roberts, M.J.; Schlenker, W. Identifying supply and demand elasticities of agricultural commodities: Implications for the US ethanol mandate. Am. Econ. Rev. 2013, 103, 2265–2295. [Google Scholar] [CrossRef] [Green Version]
- Nazlioglu, S.; Soytas, U. Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis. Energy Econ. 2012, 34, 1098–1104. [Google Scholar] [CrossRef]
- Adämmer, P.; Bohl, M.T. Speculative bubbles in agricultural prices. Q. Rev. Econ. Financ. 2015, 55, 67–76. [Google Scholar] [CrossRef]
- Beckmann, J.; Czudaj, R. Volatility transmission in agricultural futures markets. Econ. Model. 2014, 36, 541–546. [Google Scholar] [CrossRef]
- He, L.Y.; Chen, S.P. Nonlinear bivariate dependency of price–volume relationships in agricultural commodity futures markets: A perspective from multifractal detrended cross-correlation analysis. Phys. A Stat. Mech. Its Appl. 2011, 390, 297–308. [Google Scholar] [CrossRef]
- He, L.Y.; Chen, S.P. Multifractal detrended cross-correlation analysis of agricultural futures markets. Chaos Solitons Fractals 2011, 44, 355–361. [Google Scholar] [CrossRef]
- Liu, L. Cross-correlations between crude oil and agricultural commodity markets. Phys. A Stat. Mech. Its Appl. 2014, 395, 293–302. [Google Scholar] [CrossRef]
- Siqueira, E.L., Jr.; Stošić, T.; Bejan, L.; Stošić, B. Correlations and cross-correlations in the Brazilian agrarian commodities and stocks. Phys. A Stat. Mech. Its Appl. 2010, 389, 2739–2743. [Google Scholar] [CrossRef]
- Kristoufek, L.; Vosvrda, M. Commodity futures and market efficiency. Energy Econ. 2014, 42, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Zunino, L.; Tabak, B.M.; Serinaldi, F.; Zanin, M.; Pérez, D.G.; Rosso, O.A. Commodity predictability analysis with a permutation information theory approach. Phys. A Stat. Mech. Its Appl. 2011, 390, 876–890. [Google Scholar] [CrossRef]
- Tabak, B.M.; Serra, T.R.; Cajueiro, D.O. Topological properties of commodities networks. Eur. Phys. J. B 2010, 74, 243–249. [Google Scholar] [CrossRef]
- Hochman, G.; Rajagopal, D.; Timilsina, G.; Zilberman, D. Quantifying the causes of the global food commodity price crisis. Biomass Bioenergy 2014, 68, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Ivanic, M.; Martin, W.; Zaman, H. Estimating the short-run poverty impacts of the 2010–11 surge in food prices. World Dev. 2012, 40, 2302–2317. [Google Scholar] [CrossRef] [Green Version]
- Bellemare, M.F. Rising food prices, food price volatility, and social unrest. Am. J. Agric. Econ. 2015, 97, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [Green Version]
- FAO. 2018. The State of Agricultural Commodity Markets. In Agricultural Trade, Climate Change and Food Security; FAO: Rome, Italy, 2018. [Google Scholar]
- Mueller, B.; Mueller, C. The political economy of the Brazilian model of agricultural development: Institutions versus sectoral policy. Q. Rev. Econ. Financ. 2016, 62, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, F.; Hernandez, M.A.; Minot, N.; Robles, M. Transmission of Food Price Volatility from International to Domestic Markets: Evidence from Africa, Latin America, and South Asia. In Food Price Volatility and Its Implications for Food Security and Policy; Springer: Cham, Switzerland, 2016; pp. 303–328. [Google Scholar]
- Balcombe, K.; Bailey, A.; Brooks, J. Threshold effects in price transmission: The case of Brazilian wheat, maize, and soya prices. Am. J. Agric. Econ. 2007, 89, 308–323. [Google Scholar] [CrossRef]
- Hertel, T.W.; Tyner, W.E.; Birur, D.K. The global impacts of biofuel mandates. Energy J. 2010, 31, 75–100. [Google Scholar] [CrossRef] [Green Version]
- Kristoufek, L.; Janda, K.; Zilberman, D. Comovements of ethanol-related prices: Evidence from Brazil and the USA. Gcb Bioenergy 2016, 8, 346–356. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, B.L.; Schulz, F. Volatility linkages between energy and agricultural commodity prices. Energy Econ. 2016, 54, 190–203. [Google Scholar] [CrossRef] [Green Version]
- He, L.Y.; Chen, S.P. Are developed and emerging agricultural futures markets multifractal? A comparative perspective. Phys. A Stat. Mech. Its Appl. 2010, 389, 3828–3836. [Google Scholar] [CrossRef]
- Kristoufek, L.; Janda, K.; Zilberman, D. Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective. Energy Econ. 2012, 34, 1380–1391. [Google Scholar] [CrossRef]
- Kristoufek, L.; Janda, K.; Zilberman, D. Regime-dependent topological properties of biofuels networks. Eur. Phys. J. B 2013, 86, 40. [Google Scholar] [CrossRef]
- Lima CR, A.; de Melo, G.R.; Stosic, B.; Stosic, T. Cross-correlations between Brazilian biofuel and food market: Ethanol versus sugar. Phys. A Stat. Mech. Its Appl. 2019, 513, 687–693. [Google Scholar] [CrossRef]
- Zunino, L.; Zanin, M.; Tabak, B.M.; Pérez, D.G.; Rosso, O.A. Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency. Phys. A Stat. Mech. Its Appl. 2010, 389, 1891–1901. [Google Scholar] [CrossRef] [Green Version]
- Zunino, L.; Bariviera, A.F.; Guercio, M.B.; Martinez, L.B.; Rosso, O.A. On the efficiency of sovereign bond markets. Phys. A Stat. Mech. Its Appl. 2012, 391, 4342–4349. [Google Scholar] [CrossRef] [Green Version]
- Bariviera, A.F.; Zunino, L.; Rosso, O.A. An analysis of high-frequency cryptocurrencies prices dynamics using permutation-information-theory quantifiers. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 075511. [Google Scholar] [CrossRef]
- Bariviera, A.F.; Zunino, L.; Guercio, M.B.; Martinez, L.B.; Rosso, O.A. Efficiency and credit ratings: A permutation-information-theory analysis. J. Stat. Mech. Theory Exp. 2013, 2013, PO8007. [Google Scholar] [CrossRef] [Green Version]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Graff, G.; Graff, B.; Kaczkowska, A.; Makowiec, D.; Amigó, J.M.; Piskorski, J.; Guzik, P. Ordinal pattern statistics for the assessment of heart rate variability. Eur. Phys. J. Spec. Top. 2013, 222, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Ouyang, G.; Chen, H.; Gu, Y.; Liu, X.; Li, X. Characterizing dynamics of absence seizure EEG with spatial-temporal permutation entropy. Neurocomputing 2018, 275, 577–585. [Google Scholar] [CrossRef]
- Yan, R.; Liu, Y.; Gao, R.X. Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines. Mech. Syst. Signal Process. 2012, 29, 474–484. [Google Scholar] [CrossRef]
- Gao, Y.; Villecco, F.; Li, M.; Song, W. Multi-Scale permutation entropy based on improved LMD and HMM for rolling bearing diagnosis. Entropy 2017, 19, 176. [Google Scholar] [CrossRef] [Green Version]
- Consolini, G.; De Michelis, P. Permutation entropy analysis of complex magnetospheric dynamics. J. Atmos. Sol.-Terr. Phys. 2014, 115, 25–31. [Google Scholar] [CrossRef]
- Barreiro, M.; Marti, A.C.; Masoller, C. Inferring long memory processes in the climate network via ordinal pattern analysis. Chaos Interdiscip. J. Nonlinear Sci. 2011, 21, 013101. [Google Scholar] [CrossRef] [Green Version]
- Saco, P.M.; Carpi, L.C.; Figliola, A.; Serrano, E.; Rosso, O.A. Entropy analysis of the dynamics of El Niño/Southern Oscillation during the Holocene. Phys. A Stat. Mech. Its Appl. 2010, 389, 5022–5027. [Google Scholar] [CrossRef]
- Mihailović, D.T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G. Complexity analysis of the turbulent environmental fluid flow time series. Phys. A Stat. Mech. Its Appl. 2014, 395, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Zunino, L.; Zanin, M.; Tabak, B.M.; Pérez, D.G.; Rosso, O.A. Forbidden patterns, permutation entropy and stock market inefficiency. Phys. A Stat. Mech. Its Appl. 2009, 388, 2854–2864. [Google Scholar] [CrossRef]
- Yin, Y.; Shang, P. Weighted permutation entropy based on different symbolic approaches for financial time series. Phys. A Stat. Mech. Its Appl. 2016, 443, 137–148. [Google Scholar] [CrossRef]
- Riedl, M.; Müller, A.; Wessel, N. Practical considerations of permutation entropy. Eur. Phys. J. Spec. Top. 2013, 222, 249–262. [Google Scholar] [CrossRef]
- Rosso, O.A.; Larrondo, H.A.; Martin, M.T.; Plastino, A.; Fuentes, M.A. Distinguishing noise from chaos. Phys. Rev. Lett. 2007, 99, 154102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legnani, W.; Traversaro, F.; Redelico, F.O.; Cymberknop, L.J.; Armentano, R.L.; Rosso, O.A. Analysis of ischaemic crisis using the informational causal entropy-complexity plane. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 075518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weck, P.J.; Schaffner, D.A.; Brown, M.R.; Wicks, R.T. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind. Phys. Rev. E 2015, 91, 023101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggs, J.E.; Morales, G.J. Permutation entropy analysis of temperature fluctuations from a basic electron heat transport experiment. Plasma Phys. Control. Fusion 2013, 55, 085015. [Google Scholar] [CrossRef] [Green Version]
- Siddagangaiah, S.; Li, Y.; Guo, X.; Chen, X.; Zhang, Q.; Yang, K.; Yang, Y. A complexity-based approach for the detection of weak signals in ocean ambient noise. Entropy 2016, 18, 101. [Google Scholar] [CrossRef] [Green Version]
- Sippel, S.; Lange, H.; Mahecha, M.D.; Hauhs, M.; Bodesheim, P.; Kaminski, T.; Rosso, O.A. Diagnosing the dynamics of observed and simulated ecosystem gross primary productivity with time causal information theory quantifiers. PLoS ONE 2016, 11, e0164960. [Google Scholar] [CrossRef]
- Stosic, T.; Telesca, L.; de Souza Ferreira, D.V.; Stosic, B. Investigating anthropically induced effects in streamflow dynamics by using permutation entropy and statistical complexity analysis: A case study. J. Hydrol. 2016, 540, 1136–1145. [Google Scholar] [CrossRef]
- Jovanovic, T.; García, S.; Gall, H.; Mejía, A. Complexity as a streamflow metric of hydrologic alteration. Stoch. Environ. Res. Risk Assess. 2017, 31, 2107–2119. [Google Scholar] [CrossRef]
- Serinaldi, F.; Zunino, L.; Rosso, O.A. Complexity–entropy analysis of daily stream flow time series in the continental United States. Stoch. Environ. Res. Risk Assess. 2014, 28, 1685–1708. [Google Scholar] [CrossRef]
- Martin, M.T.; Plastino, A.; Rosso, O.A. Generalized statistical complexity measures: Geometrical and analytical properties. Phys. A Stat. Mech. Its Appl. 2006, 369, 439–462. [Google Scholar] [CrossRef]
- CEPEA. Available online: https://www.cepea.esalq.usp.br/br (accessed on 26 October 2019).
- Cavalett, O.; Junqueira, T.L.; Dias, M.O.; Jesus, C.D.; Mantelatto, P.E.; Cunha, M.P.; Bonomi, A. Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technol. Environ. Policy 2012, 14, 399–410. [Google Scholar] [CrossRef]
- Da Silva, V.P.; van der Werf, H.M.; Soares, S.R.; Corson, M.S. Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. J. Environ. Manag. 2014, 133, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Hamadi, H.; Bassil, C.; Nehme, T. News surprises and volatility spillover among agricultural commodities: The case of corn, wheat, soybean and soybean oil. Res. Int. Bus. Financ. 2017, 41, 148–157. [Google Scholar] [CrossRef]
Name | Currency (Brazilian Real–R$)/ Unit of Measure |
---|---|
Sugar | R$/bag of 50 kg |
Cotton | R$/pound (0.453597 kg) |
Rice | R$/bag of 50 kg |
Calves | R$/head |
Cattle | R$/15 kg |
Coffee | R$/bag of 60 kg |
Ethanol | R$/liter |
Broilers | R$/Kg |
Corn | R$/bag of 60 kg |
Soybeans | R$/bag of 60 kg |
Pork | R$/Kg |
Wheat | R$/Ton |
d = 4 | d = 5 | |||||||
---|---|---|---|---|---|---|---|---|
Position | Commodities | PE | CP | Commodities | PE | CP | ||
Coffee | 0.950 | 0.058 | 0.076 | Coffee | 0.926 | 0.109 | 0.132 | |
Wheat | 0.946 | 0.060 | 0.081 | Wheat | 0.916 | 0.114 | 0.142 | |
Calves | 0.923 | 0.088 | 0.117 | Cattle | 0.884 | 0.139 | 0.181 | |
Cattle | 0.915 | 0.088 | 0.122 | Calves | 0.891 | 0.155 | 0.189 | |
Rice | 0.901 | 0.106 | 0.144 | Rice | 0.862 | 0.176 | 0.224 | |
Sugar | 0.854 | 0.140 | 0.202 | Sugar | 0.803 | 0.213 | 0.290 | |
Corn | 0.850 | 0.146 | 0.209 | Corn | 0.798 | 0.219 | 0.298 | |
Soybeans | 0.822 | 0.160 | 0.240 | Soybeans | 0.780 | 0.226 | 0.316 | |
Ethanol | 0.820 | 0.161 | 0.241 | Ethanol | 0.766 | 0.227 | 0.326 | |
Broilers | 0.744 | 0.214 | 0.334 | Broilers | 0.703 | 0.289 | 0.414 | |
Cotton | 0.716 | 0.217 | 0.357 | Cotton | 0.657 | 0.267 | 0.434 | |
Pork | 0.638 | 0.253 | 0.441 | Pork | 0.570 | 0.312 | 0.531 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araujo, F.H.A.; Bejan, L.; Rosso, O.A.; Stosic, T. Permutation Entropy and Statistical Complexity Analysis of Brazilian Agricultural Commodities. Entropy 2019, 21, 1220. https://doi.org/10.3390/e21121220
de Araujo FHA, Bejan L, Rosso OA, Stosic T. Permutation Entropy and Statistical Complexity Analysis of Brazilian Agricultural Commodities. Entropy. 2019; 21(12):1220. https://doi.org/10.3390/e21121220
Chicago/Turabian Stylede Araujo, Fernando Henrique Antunes, Lucian Bejan, Osvaldo A. Rosso, and Tatijana Stosic. 2019. "Permutation Entropy and Statistical Complexity Analysis of Brazilian Agricultural Commodities" Entropy 21, no. 12: 1220. https://doi.org/10.3390/e21121220
APA Stylede Araujo, F. H. A., Bejan, L., Rosso, O. A., & Stosic, T. (2019). Permutation Entropy and Statistical Complexity Analysis of Brazilian Agricultural Commodities. Entropy, 21(12), 1220. https://doi.org/10.3390/e21121220