Finite Amplitude Stability of Internal Steady Flows of the Giesekus Viscoelastic Rate-Type Fluid
Abstract
:1. Introduction
(Note that a similar issue arises even for the standard Navier–Stokes fluid (see, for example, Baggett and Trefethen [16] for a discussion of several low-dimensional models of subcritical transition).) This means that the linear stability analysis, that is stability analysis with respect to infinitesimal perturbations, is of limited applicability in the investigation of the transition scenarios, albeit it can still provide important insight into the problem. (See, for example, Beris et al. [17], Blonce [18], Grillet et al. [19] and Pourjafar and Sadeghy [20], Pourjafar and Sadeghy [21] for linear stability analysis of flows of viscoelastic fluids described by the Giesekus viscoelastic rate-type model.) Moreover, quoting again Morozov and van Saarloos [4][Linear stability] (if it exists) is not very relevant for the existence of dynamics of the patterns that typically arise before the instability of the base state occurs.
On top of that, even if the technique such as weakly nonlinear analysis is apparently successful, then, as Meulenbroek et al. [15] put it,[Subcritical instability] is governed by all kinds of nonlinear self-enhancing interactions and so there is almost never a simple approximation scheme that allows one to explore the infinite dimensional space of interactions in all details, and determine which direction corresponds to the smallest threshold [for instability]. Thus, in practice, one can explore such situations, in theoretical studies as well as in experiments, only for a given class of perturbations.
One should also keep in mind that our expansion is only carried out to lowest order in the nonlinearity, so one may wonder about the robustness of these results as long as higher order terms in the expansion are unknown.
2. Giesekus Model
2.1. Governing Equations
2.2. Thermodynamic Basis
2.3. Scaling
2.4. Boundary Conditions
3. Base Flow—Non-Equilibrium Steady State
3.1. Notation for the Stability Analysis
3.2. Governing Equations in a Steady State
3.3. Concept of Stability
Apparently, the asymptotic stability we are interested in is a more ambitious concept, since we want the perturbed solution to converge back to the original solution (non-equilibrium steady state). Second, we are not interested in the stability of the steady state subject to infinitesimal perturbations, that is in the linearised stability. We are interested in the evolution of finite amplitude perturbations.[…] if the initial data for an initial value problem are altered slightly, then the perturbed solution diverges from the original solution no faster than at a controlled exponential rate.
4. Lyapunov Functional
4.1. Concept of Lyapunov Functional
- There exists a neighbourhood of such that the functional is bounded from below by a function f of the distance between the steady state and the perturbation , that is
- The time derivative of is negative and bounded from above by a function g of the distance between the steady state and the perturbation , that is
4.2. Construction of Lyapunov Type Functional for Stability Analysis of a Spatially Inhomogeneous Steady State
5. Main Result
6. Taylor–Couette Flow
6.1. Base Flow—Non-Equilibrium Steady State
6.2. Explicit Criterion for the Stability of Spatially Inhomogeneous Non-Equilibrium Steady State
6.3. Numerical Experiments—Evolution of Various Initial Perturbations
6.3.1. Scenario A—Localised Perturbation of the Left Cauchy–Green Field
6.3.2. Scenario B—Global Perturbation of the Velocity Field
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Distance between Positive Definite Matrices and Its Generalisation to Spatially Distributed Tensor Fields
Appendix B. Formula for the Time Derivative
Appendix B.1. Evolution Equations for Perturbation
Appendix B.2. First Term of Equation (A26)
Appendix B.3. Second Term of Equation (A26)
Appendix B.4. Third Term of Equation (A26)
Appendix B.5. Explicit Formula for the Time Derivative of Lyapunov Type Functional
Appendix C. Estimate on the Time Derivative
References
- Petrie, C.J.S.; Denn, M.M. Instabilities in polymer processing. AIChE J. 1976, 22, 209–236. [Google Scholar] [CrossRef]
- Larson, R.G. Instabilities in viscoelastic flows. Rheol. Acta 1992, 31, 213–263. [Google Scholar] [CrossRef]
- Shaqfeh, E.S.G. Purely elastic instabilities in viscometric flows. Ann. Rev. Fluid Mech. 1996, 28, 129–185. [Google Scholar] [CrossRef]
- Morozov, A.N.; van Saarloos, W. An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Phys. Rep. 2007, 447, 112–143, Nonequilibrium physics: From complex fluids to biological systems I. Instabilities and pattern formation. [Google Scholar] [CrossRef]
- Li, X.B.; Li, F.C.; Cai, W.H.; Zhang, H.N.; Yang, J.C. Very-low-Re chaotic motions of viscoelastic fluid and its unique applications in microfluidic devices: A review. Exp. Therm. Fluid Sci. 2012, 39, 1–16. [Google Scholar] [CrossRef]
- Groisman, A.; Steinberg, V. Elastic turbulence in a polymer solution flow. Nature 2000, 405, 53–55. [Google Scholar] [CrossRef] [Green Version]
- Dubief, Y.; Terrapon, V.E.; Soria, J. On the mechanism of elasto-inertial turbulence. Phys. Fluids 2013, 25, 110817. [Google Scholar] [CrossRef] [Green Version]
- Lieu, B.K.; Jovanović, M.R.; Kumar, S. Worst-case amplification of disturbances in inertialess Couette flow of viscoelastic fluids. J. Fluid Mech. 2013, 723, 232–263. [Google Scholar] [CrossRef] [Green Version]
- Grilli, M.; Vázquez-Quesada, A.; Ellero, M. Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles. Phys. Rev. Lett. 2013, 110, 174501. [Google Scholar] [CrossRef]
- Page, J.; Zaki, T.A. The dynamics of spanwise vorticity perturbations in homogeneous viscoelastic shear flow. J. Fluid Mech. 2015, 777, 327–363. [Google Scholar] [CrossRef] [Green Version]
- Biancofiore, L.; Brandt, L.; Zaki, T.A. Streak instability in viscoelastic Couette flow. Phys. Rev. Fluids 2017, 2, 043304. [Google Scholar] [CrossRef]
- Valente, P.C.; da Silva, C.B.; Pinho, F.T. Energy spectra in elasto-inertial turbulence. Phys. Fluids 2016, 28, 075108. [Google Scholar] [CrossRef]
- Lee, S.J.; Zaki, T.A. Simulations of natural transition in viscoelastic channel flow. J. Fluid Mech. 2017, 820, 232–262. [Google Scholar] [CrossRef]
- Plan, E.L.C.V.M.; Musacchio, S.; Vincenzi, D. Emergence of chaos in a viscous solution of rods. Phys. Rev. E 2017, 96, 053108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meulenbroek, B.; Storm, C.; Morozov, A.N.; van Saarloos, W. Weakly nonlinear subcritical instability of visco-elastic Poiseuille flow. J. Non-Newton. Fluid Mech. 2004, 116, 235–268. [Google Scholar] [CrossRef] [Green Version]
- Baggett, J.S.; Trefethen, L.N. Low-dimensional models of subcritical transition to turbulence. Phys. Fluids 1997, 9, 1043–1053. [Google Scholar] [CrossRef] [Green Version]
- Beris, A.N.; Avgousti, M.; Souvaliotis, A. Spectral calculations of viscoelastic flows: Evaluation of the Giesekus constitutive equation in model flow problems. J. Non-Newton. Fluid Mech. 1992, 44, 197–228. [Google Scholar] [CrossRef]
- Blonce, L. Linear stability of Giesekus fluid in Poiseuille flow. Mech. Res. Commun. 1997, 24, 223–228. [Google Scholar] [CrossRef]
- Grillet, A.M.; Bogaerds, A.C.B.; Peters, G.W.M.; Baaijens, F.P.T. Stability analysis of constitutive equations for polymer melts in viscometric flows. J. Non-Newton. Fluid Mech. 2002, 103, 221–250. [Google Scholar] [CrossRef]
- Pourjafar, M.; Sadeghy, K. Taylor–Couette instability of Giesekus fluids: Inertia effects. J. Soc. Rheol. Jpn. 2012, 40, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Pourjafar, M.; Sadeghy, K. Dean instability of Giesekus fluids in azimuthal flow between two fixed, infinitely-long, concentric cylinders at arbitrary gap spacings. J. Non-Newton. Fluid Mech. 2012, 177–178, 54–63. [Google Scholar] [CrossRef]
- Doering, C.R.; Eckhardt, B.; Schumacher, J. Failure of energy stability in Oldroyd-B fluids at arbitrarily low Reynolds numbers. J. Non-Newton. Fluid Mech. 2006, 135, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Bulíček, M.; Málek, J.; Průša, V. Thermodynamics and stability of non-equilibrium steady states in open systems. Entropy 2019, 21, 704. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, R.; Jain, T.; Lim, Y. On the Bures–Wasserstein distance between positive definite matrices. Expo. Math. 2019, 37, 165–191. [Google Scholar] [CrossRef] [Green Version]
- Giesekus, H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newton. Fluid Mech. 1982, 11, 69–109. [Google Scholar] [CrossRef]
- Leonov, A.I. Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta 1976, 15, 85–98. [Google Scholar] [CrossRef]
- Mattos, H.S.C. A thermodynamically consistent constitutive theory for fluids. Int. J. Non-Linear Mech. 1998, 33, 97–110. [Google Scholar] [CrossRef]
- Wapperom, P.; Hulsen, M.A. Thermodynamics of viscoelastic fluids: The temperature equation. J. Rheol. 1998, 42, 999–1019. [Google Scholar] [CrossRef] [Green Version]
- Dressler, M.; Edwards, B.J.; Öttinger, H.C. Macroscopic thermodynamics of flowing polymeric liquids. Rheol. Acta 1999, 38, 117–136. [Google Scholar] [CrossRef]
- Ellero, M.; Español, P.; Flekkøy, E.G. Thermodynamically consistent fluid particle model for viscoelastic flows. Phys. Rev. E 2003, 68, 041504. [Google Scholar] [CrossRef] [Green Version]
- Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 1997, 56, 6620–6632. [Google Scholar] [CrossRef]
- Öttinger, H.C.; Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 1997, 56, 6633–6655. [Google Scholar] [CrossRef]
- Pavelka, M.; Klika, V.; Grmela, M. Multiscale Thermo-Dynamics; de Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Rajagopal, K.R.; Srinivasa, A.R. A thermodynamic frame work for rate type fluid models. J. Non-Newton. Fluid Mech. 2000, 88, 207–227. [Google Scholar] [CrossRef]
- Málek, J.; Rajagopal, K.R.; Tůma, K. On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis. Int. J. Non-Linear Mech. 2015, 76, 42–47. [Google Scholar] [CrossRef]
- Hron, J.; Miloš, V.; Průša, V.; Souček, O.; Tůma, K. On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients. Int. J. Non-Linear Mech. 2017, 95, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Málek, J.; Průša, V.; Skřivan, T.; Süli, E. Thermodynamics of viscoelastic rate-type fluids with stress diffusion. Phys. Fluids 2018, 30, 023101. [Google Scholar] [CrossRef]
- Málek, J.; Rajagopal, K.R.; Tůma, K. Derivation of the variants of the Burgers model using a thermodynamic approach and appealing to the concept of evolving natural configurations. Fluids 2018, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Dostalík, M.; Průša, V.; Skřivan, T. On diffusive variants of some classical viscoelastic rate-type models. AIP Conf. Proc. 2019, 2107, 020002. [Google Scholar] [CrossRef]
- Boyaval, S.; Lelièvre, T.; Mangoubi, C. Free-energy-dissipative schemes for the Oldroyd-B model. ESAIM-Math. Model. Numer. Anal. 2009, 43, 523–561. [Google Scholar] [CrossRef] [Green Version]
- Henry, D. Geometric Theory of Semilinear Parabolic Equations; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1981; Volume 840. [Google Scholar]
- Yoshizawa, T. Stability Theory by Liapunov’s Second Method; Publications of the Mathematical Society of Japan; The Mathematical Society of Japan: Tokyo, Japan, 1966; Volume 9. [Google Scholar]
- Dafermos, C.M. The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 1979, 70, 167–179. [Google Scholar] [CrossRef]
- Dafermos, C.M. Hyperbolic Conservation Laws in Continuum Physics, 3rd ed.; Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]; Springer: Berlin, Germany, 2010; Volume 325. [Google Scholar] [CrossRef]
- Schaeffer, D.G.; Cain, J.W. Ordinary Differential Equations: Basics and Beyond; Texts in Applied Mathematics; Springer: New York, NY, USA, 2016; Volume 65. [Google Scholar] [CrossRef]
- Masmoudi, N. Equations for Polymeric Materials. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids; Giga, Y., Novotný, A., Eds.; Springer: Cham, Switzerlands, 2018; pp. 973–1005. [Google Scholar] [CrossRef]
- Barrett, J.W.; Süli, E. Existence of global weak solutions to the kinetic Hookean dumbbell model for incompressible dilute polymeric fluids. Nonlinear Anal. Real World Appl. 2018, 39, 362–395. [Google Scholar] [CrossRef] [Green Version]
- Šilhavý, M. The Mechanics and Thermodynamics of Continuous Media; Texts and Monographs in Physics; Springer: Berlin, Germany, 1997. [Google Scholar]
- Coleman, B.D. On the stability of equilibrium states of general fluids. Arch. Ration. Mech. Anal. 1970, 36, 1–32. [Google Scholar] [CrossRef]
- Gurtin, M.E. Thermodynamics and the energy criterion for stability. Arch. Ration. Mech. Anal. 1973, 52, 93–103. [Google Scholar] [CrossRef]
- Gurtin, M.E. Thermodynamics and stability. Arch. Ration. Mech. Anal. 1975, 59, 63–96. [Google Scholar] [CrossRef]
- Duhem, P. Traité d’Énergetique ou Thermodynamique Générale; Gauthier-Villars: Paris, France, 1911. (In French) [Google Scholar]
- Ericksen, J.L. A thermo-kinetic view of elastic stability theory. Int. J. Solids Struct. 1966, 2, 573–580. [Google Scholar] [CrossRef]
- Nečas, J.; Málek, J.; Rokyta, M.; Růžička, M. Weak and Measure-Valued Solutions to Evolutionary PDEs; Chapman & Hall: London, UK, 1996. [Google Scholar]
- Evans, L.C. Partial Differential Equations; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 1998; Volume 19. [Google Scholar]
- Joseph, D.D. Stability of Fluid Motions I; Springer Tracts in Natural Philosophy; Springer: Berlin, Germany; New York, NY, USA, 1976; Volume 27. [Google Scholar]
- Straughan, B. The Energy Method, Stability, and Nonlinear Convection, 2nd ed.; Applied Mathematical Sciences; Springer: New York, NY, USA, 2004; Volume 91. [Google Scholar]
- Guillopé, C.; Saut, J.C. Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. Theory Methods Appl. 1990, 15, 849–869. [Google Scholar] [CrossRef] [Green Version]
- Kierzenka, J.; Shampine, L.F. A BVP solver based on residual control and the Maltab PSE. ACM Trans. Math. Softw. 2001, 27, 299–316. [Google Scholar] [CrossRef]
- Korelc, J.; Wriggers, P. Automation of Finite Element Methods; Springer: Berlin, Germany, 2016. [Google Scholar]
- Hron, J.; Rajagopal, K.R.; Tůma, K. Flow of a Burgers fluid due to time varying loads on deforming boundaries. J. Non-Newton. Fluid Mech. 2014, 210, 66–77. [Google Scholar] [CrossRef]
- Málek, J.; Rajagopal, K.R.; Tůma, K. A thermodynamically compatible model for describing asphalt binders: Solutions of problems. Int. J. Pavement Eng. 2016, 17, 550–564. [Google Scholar] [CrossRef]
- Tůma, K.; Stein, J.; Průša, V.; Friedmann, E. Motion of the vitreous humour in a deforming eye–fluid-structure interaction between a nonlinear elastic solid and viscoleastic fluid. Appl. Math. Comput. 2018, 335, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Korelc, J. Multi-language and multi-environment generation of nonlinear finite element codes. Eng. Comput. 2002, 18, 312–327. [Google Scholar] [CrossRef]
- Korelc, J. Automation of primal and sensitivity analysis of transient coupled problems. Comp. Mech. 2009, 44, 631–649. [Google Scholar] [CrossRef]
- Joo, Y.L.; Shaqfeh, E.S.G. The effects of inertia on the viscoelastic Dean and Taylor–Couette flow instabilities with application to coating flows. Phys. Fluids A Fluid Dyn. 1992, 4, 2415–2431. [Google Scholar] [CrossRef]
- Byars, J.A.; Öztekin, A.; Brown, R.A.; McKinley, G.H. Spiral instabilities in the flow of highly elastic fluids between rotating parallel disks. J. Fluid Mech. 1994, 271, 173–218. [Google Scholar] [CrossRef]
- Ganpule, H.K.; Khomami, B. An investigation of interfacial instabilities in the superposed channel flow of viscoelastic fluids. J. Non-Newton. Fluid Mech. 1999, 81, 27–69. [Google Scholar] [CrossRef]
- Smith, M.D.; Joo, Y.L.; Armstrong, R.C.; Brown, R.A. Linear stability analysis of flow of an Oldroyd-B fluid through a linear array of cylinders. J. Non-Newton. Fluid Mech. 2003, 109, 13–50. [Google Scholar] [CrossRef]
- Karapetsas, G.; Tsamopoulos, J. On the stick-slip flow from slit and cylindrical dies of a Phan-Thien and Tanner fluid model. II. Linear stability analysis. Phys. Fluids 2013, 25, 093105. [Google Scholar] [CrossRef] [Green Version]
- Pettas, D.; Karapetsas, G.; Dimakopoulos, Y.; Tsamopoulos, J. On the origin of extrusion instabilities: Linear stability analysis of the viscoelastic die swell. J. Non-Newton. Fluid Mech. 2015, 224, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Phan Thien, N.; Tanner, R.I. A new constitutive equation derived from network theory. J. Non-Newton. Fluid Mech. 1977, 2, 353–365. [Google Scholar] [CrossRef]
- Bird, R.B.; Dotson, P.J.; Johnson, N.L. Polymer solution rheology based on a finitely extensible bead–spring chain model. J. Non-Newton. Fluid Mech. 1980, 7, 213–235. [Google Scholar] [CrossRef]
- Hu, D.; Lelièvre, T. New entropy estimates for Oldroyd-B and related models. Commun. Math. Sci. 2007, 5, 909–916. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.W.; Boyaval, S. Existence and approximation of a (regularized) Oldroyd-B model. Math. Models Methods Appl. Sci. 2011, 21, 1783–1837. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.W.; Boyaval, S. Finite element approximation of the FENE-P Model. IMA J. Numer. Anal. 2017, drx061. [Google Scholar] [CrossRef]
- Bulíček, M.; Málek, J.; Průša, V.; Süli, E. A PDE-analysis for a class of thermodynamically compatible viscoelastic rate type fluids with stress diffusion. In Mathematical Analysis in Fluid Mechanics: Selected Recent Results; Danchin, R., Farwig, R., Neustupa, J., Penel, P., Eds.; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2018; Volume 710, pp. 25–53. [Google Scholar] [CrossRef] [Green Version]
- Guillopé, C.; Saut, J.C. Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modélisation Math. Anal. Numér. 1990, 24, 369–401. [Google Scholar] [CrossRef] [Green Version]
- Nohel, J.; Pego, R. Nonlinear stability and asymptotic behavior of shearing motions of a non-newtonian fluid. SIAM J. Math. Anal. 1993, 24, 911–942. [Google Scholar] [CrossRef]
- Jourdain, B.; Le Bris, C.; Lelièvre, T.; Otto, F. Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 2006, 181, 97–148. [Google Scholar] [CrossRef]
- Renardy, M. Some global stability results for shear flows of viscoelastic fluids. J. Math. Fluid Mech. 2009, 11, 100–109. [Google Scholar] [CrossRef]
- Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Graham, M.D. Polymer turbulence with Reynolds and Riemann. J. Fluid Mech. 2018, 848, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Hiai, F.; Petz, D. Riemannian metrics on positive definite matrices related to means. Linear Algebra Appl. 2009, 430, 3105–3130. [Google Scholar] [CrossRef] [Green Version]
- Hiai, F.; Petz, D. Riemannian metrics on positive definite matrices related to means. II. Linear Algebra Appl. 2012, 436, 2117–2136. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dostalík, M.; Průša, V.; Tůma, K. Finite Amplitude Stability of Internal Steady Flows of the Giesekus Viscoelastic Rate-Type Fluid. Entropy 2019, 21, 1219. https://doi.org/10.3390/e21121219
Dostalík M, Průša V, Tůma K. Finite Amplitude Stability of Internal Steady Flows of the Giesekus Viscoelastic Rate-Type Fluid. Entropy. 2019; 21(12):1219. https://doi.org/10.3390/e21121219
Chicago/Turabian StyleDostalík, Mark, Vít Průša, and Karel Tůma. 2019. "Finite Amplitude Stability of Internal Steady Flows of the Giesekus Viscoelastic Rate-Type Fluid" Entropy 21, no. 12: 1219. https://doi.org/10.3390/e21121219
APA StyleDostalík, M., Průša, V., & Tůma, K. (2019). Finite Amplitude Stability of Internal Steady Flows of the Giesekus Viscoelastic Rate-Type Fluid. Entropy, 21(12), 1219. https://doi.org/10.3390/e21121219