Data-Driven GENERIC Modeling of Poroviscoelastic Materials
Abstract
:1. Introduction
2. Numerical Modeling of the Indentation Process
2.1. The Experimental Procedure
2.2. GENERIC Formalism
- 1.
- [] is the vector of state variables of the problem at time t. The choice of is irrelevant in the sense that different sets of lead to different GENERIC formalisms, all of them thermodynamically consistent. However, should contain variables—such as position, momentum, stress, energy, or entropy, for instance—able enough to evaluate the energy conservation and the dissipation therms.
- L
- is the so-called Poisson matrix and will be responsible for the reversible (Hamiltonian) part of the evolution of the system.
- E
- represents the energy of the system, as a function of its particular state at time t, .
- M
- represents the friction matrix, responsible for the irreversible part of the evolution of the system.
- S
- represents the entropy of the system for the particular choice of variables .
2.3. Data-Driven Characterization of the GENERIC Description of a Hydrogel
2.4. Equivalence With Traditional Ways of Phenomenological Model Fitting
3. Results
3.1. GENERIC Model
3.2. Predictive Capabilities for New Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Polyethylene Hydrogels Matrices
Appendix B. MICA Silicate Hydrogels Matrices
References
- Ghnatios, C.; Mathis, C.H.; Simic, R.; Spencer, N.D.; Chinesta, F. Modeling soft permeable matter with the proper generalized decomposition (PGD) approach, and verification by means of nanoindentation. Soft Matter 2017, 13, 4482–4493. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Marzal, R.M.; Bieleckia, R.M.; Spencer, N.D. Understanding the role of viscous solvent confinement in the tribological behavior of polymer brushes: A bioinspired approach. Soft Matter 2013, 9, 10572–10585. [Google Scholar] [CrossRef]
- Pawaskar, S.S.; Jin, Z.M.; Fisher, J. Modelling of fluid support inside articular cartilage during sliding. J. Eng. Tribol. 2007, 221, 165–174. [Google Scholar] [CrossRef]
- Moore, A.C.; Burris, D.L. Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthr. Cartil. 2017, 25, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zhong, D.; Wang, P.; Yin, T.; Zhou, H.; Yu, H.; Baliga, C.; Qu, S.; Yang, W. A physically based visco-hyperelastic constitutive model for soft materials. J. Mech. Phys. Solids 2019, 128, 208–218. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, B.; Zhang, K. Modelling three-dimensional soft elastohydrodynamic lubrication contact of heterogeneous materials. Tribol. Int. 2019, 129, 377–389. [Google Scholar] [CrossRef]
- Gzaiel, M.; Triki, E.; Barkaoui, A. Finite element modeling of the puncture-cutting response of soft material by a pointed blade. Mech. Mater. 2019, 136, 103082. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Q.-S. Effects of large deformation and material nonlinearity on spherical indentation of hyperelastic soft materials. Mech. Res. Commun. 2017, 84, 55–59. [Google Scholar] [CrossRef]
- Brizle, A.; Martin, C.; Uhlig, S.; Wall, W. A coupled approach for identification of nonlinear and compressible material models for soft tissue based on different experimental setups—Exemplified and detailed for lung parenchyma. J. Mech. Behav. Biomed. Mater. 2019, 94, 126–143. [Google Scholar] [CrossRef]
- Moore, W.; Balachandar, S.; Akiki, G. A hybrid point-particle force model that combines physical and data-driven approaches. J. Comput. Phys. 2019, 385, 187–208. [Google Scholar] [CrossRef]
- Zhu, M.; Han, A.; Wen, Y.-Q.; Sun, W.-Q. Optimized support vector regression algorithm-based modeling of ship dynamics. Appl. Ocean. Res. 2019, 90, 101842. [Google Scholar] [CrossRef]
- Wagner, H.; Koke, H.; Dahne, S.; Niemann, S.; Huhne, C.; Khakimova, R. Decision tree-based machine learning to optimize the laminate stacking of composite cylinders for maximum buckling load and minimum imperfection sensitivity. Compos. Struct. 2019, 220, 45–63. [Google Scholar] [CrossRef]
- Clot, A.; Meggitt, J.; Langley, R.; Elliott, A.; Moorhouse, A. Development of a hybrid FE-SEA-experimental model. J. Sound Vib. 2019, 452, 112–131. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, Y.; Gu, C. Neural network modelling of soft tissue deformation for surgical simulation. Artif. Intell. Med. 2019, 97, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Jackson, N.; Webb, M.; Pablo, J.D. Recent advances in machine learning towards multiscale soft materials design. Curr. Opin. Chem. Eng. 2019, 23, 106–114. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10561. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (part ii): Data-driven discovery of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10566. [Google Scholar]
- González, D.; Chinesta, F.; Cueto, E. Learning corrections for hyperelastic models from data. Front. Mater. 2019, 6, 14. [Google Scholar] [CrossRef]
- Grmela, M. Thermodynamics of driven systems. Phys. Rev. E 1993, 48, 919. [Google Scholar] [CrossRef]
- Grmela, M. Bracket formulation of diffusion-convection equations. Phys. D Nonlinear Phenom. 1986, 21, 179–212. [Google Scholar] [CrossRef]
- Grmela, M.; Ottinger, H. Dynamics and thermodynamics of comples fluids. II. Development of a general formalism. Phys. Rev. E 1997, 56, 6633. [Google Scholar] [CrossRef]
- Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 1997, 56, 6620–6632. [Google Scholar] [CrossRef]
- Ottinger, H.C. Beyond Equilibrium Thermodynamics; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Sherstova, T.; Stokke, B.; Skallerud, B.; Maurstad, G.; Prot, V. Nanoindentation and finite element modelling of chitosan-alignate multilayer coated hydrogels. Soft Matter 2016, 12, 7338–7349. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.L.; Kurokawa, T.; Kuroda, S.; Ihsan, A.B.; Akasaki, T.; Sato, K.; Haque, M.A.; Nakajima, T.; Gong, J.P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937. [Google Scholar] [CrossRef]
- Pimenta, A.F.; Serro, A.P.; Colaco, R.; Chauhan, A. Optimization of intraocular lens hydrogels for dual drug release: Experimentation and modelling. Eur. J. Pharm. Biopharm. 2019, 141, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Pavelka, M.; Klika, V.; Grmela, M. Multiscale Thermodynamics; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- González, D.; Chinesta, F.; Cueto, E. Thermodynamically consistent data-driven computational mechanics. Contin. Mech. Thermodyn. 2019, 31, 239–253. [Google Scholar] [CrossRef]
- Romero, I. Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems. Int. J. Numer. Meth. Eng. 2009, 79, 706–732. [Google Scholar] [CrossRef]
- Romero, I. Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics. Part I: Monolithic integrators and their application to finite strain thermoelasticity. Comput. Methods Appl. Mech. Eng. 2010, 199, 1841–1858. [Google Scholar] [CrossRef]
- Romero, I. Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics. Part II: Fractional step methods. Comput. Methods Appl. Mech. Eng. 2010, 199, 2235–2248. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, Z. Constitutive model of salt concentration-sensitive hydrogel. Mech. Mater. 2019, 136, 103092. [Google Scholar] [CrossRef]
- Ghnatios, C.; Monte, N.; Tertrais, H.; Duval, J.; Abisset, E.; Falco, A.; Chinesta, F. Towards parametric RTM processes: The interpolative mapping. ESAFORM 2019. AIP Conf. Proc. 2019, 2113, 100004. [Google Scholar]
Variable | m/s | m/s | m/s | m/s | m/s | Average Error |
---|---|---|---|---|---|---|
w | 0.06 | 0.11 | 0.29 | 0.07 | 1.1 | 0.33 |
0.14 | 0.24 | 0.77 | 0.53 | 0.85 | 0.51 | |
0.52 | 0.55 | 1.91 | 1.02 | 0.57 | 0.91 |
Variable | m/s | m/s | m/s | m/s | m/s | Average Error |
---|---|---|---|---|---|---|
w | 0.36 | 0.16 | 0.39 | 0.64 | 0.05 | 0.34 |
0.8 | 0.33 | 0.55 | 0.91 | 0.34 | 0.59 | |
3.88 | 4.71 | 3.45 | 5.46 | 1.4 | 3.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghnatios, C.; Alfaro, I.; González, D.; Chinesta, F.; Cueto, E. Data-Driven GENERIC Modeling of Poroviscoelastic Materials. Entropy 2019, 21, 1165. https://doi.org/10.3390/e21121165
Ghnatios C, Alfaro I, González D, Chinesta F, Cueto E. Data-Driven GENERIC Modeling of Poroviscoelastic Materials. Entropy. 2019; 21(12):1165. https://doi.org/10.3390/e21121165
Chicago/Turabian StyleGhnatios, Chady, Iciar Alfaro, David González, Francisco Chinesta, and Elias Cueto. 2019. "Data-Driven GENERIC Modeling of Poroviscoelastic Materials" Entropy 21, no. 12: 1165. https://doi.org/10.3390/e21121165
APA StyleGhnatios, C., Alfaro, I., González, D., Chinesta, F., & Cueto, E. (2019). Data-Driven GENERIC Modeling of Poroviscoelastic Materials. Entropy, 21(12), 1165. https://doi.org/10.3390/e21121165