Primality, Fractality, and Image Analysis
Abstract
:1. Introduction
2. Preliminaries
2.1. Prime Numbers, PIPs, and Ramanujan Primes
2.2. Fractality and Rényi Dimension
3. Binary Image and Primality
3.1. PIPs and Ramanujan Primes
3.2. Asymptoticity and k-Order PIPs
4. An Application in Dynamical Systems: The Hénon Map
5. Conclusions
Funding
Conflicts of Interest
References
- Guy, R. Unsolved Problems in Number Theory; Springer: New York, NY, USA, 2010. [Google Scholar]
- Nash, J.F., Jr.; Rassias, M.T. (Eds.) Open Problems in Mathematics; Springer: New York, NY, USA, 2016. [Google Scholar]
- Bennet, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Goles, E.; Schulz, O.; Markus, M. Prime number selection of cycles in a predator-prey model. Complexity 2001, 6, 33–38. [Google Scholar] [CrossRef]
- Yan, J.F.; Yan, A.K.; Yan, B.C. Prime numbers and the amino acid code: Analogy in coding properties. J. Theor. Biol. 1991, 151, 333–341. [Google Scholar] [CrossRef]
- Bershadskii, A. Hidden Periodicity and Chaos in the Sequence of Prime Numbers. Adv. Math. Phys. 2011, 2011, 519178. [Google Scholar] [CrossRef]
- van Zyl, B.P.; Hutchinson, D.A.W. Riemann zeros, prime numbers, and fractal potentials. Phys. Rev. E 2003, 67, 066211. [Google Scholar] [CrossRef]
- Broughan, K.A.; Barnett, A.R. On the subsequence of primes having prime subscripts. J. Integer Seq. 2009, 12, 1–12. [Google Scholar]
- Allain, C.; Cloitre, M. Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A 1991, 44, 3552–3558. [Google Scholar] [CrossRef]
- Ares, S.; Castro, M. Hidden structure in the randomness of the prime number sequence? Physica A 2006, 360, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M. 1/f noise in the distribution of prime numbers. Physica A 1997, 241, 493–499. [Google Scholar] [CrossRef]
- Batchko, R.G. A prime fractal and global quasi-self-similar structure in the distribution of prime-indexed primes. arXiv, 2014; arXiv:1405.2900v2. [Google Scholar]
- Salas, C. Base-3 repunit primes and the Cantor set. Gen. Math. 2011, 19, 103–107. [Google Scholar]
- Wolf, M. Some heuristics on the gaps between consecutive primes. arXiv, 2011; arXiv:1102.0481. [Google Scholar]
- Vartziotis, D.; Wipper, J. The Fractal Nature of an Approximate Prime Counting Function. Fractal Fract. 2017, 1, 10. [Google Scholar] [CrossRef]
- Cattani, C.; Ciancio, A. On the fractal distribution of primes and prime-indexed primes by the binary image analysis. Physica A 2016, 460, 222–229. [Google Scholar] [CrossRef]
- Sondow, J. Ramanujan Primes and Bertrand’s postulate. Am. Math. Mon. 2009, 116, 630–635. [Google Scholar] [CrossRef]
- Shevelev, V. Ramanujan and Labos Primes, Their Generalizations, and Classifications of Primes. J. Integer Seq. 2012, 15, 1–15. [Google Scholar]
- Newman, D.J. Simple analytic proof of the prime number theorem. Am. Math. Mon. 1980, 87, 693–696. [Google Scholar] [CrossRef]
- Bayless, J.; Klyve, D.; Oliveira e Silva, T. New bounds and computations on prime-indexed primes. Integers 2013, 13, 1–21. [Google Scholar]
- Hutchinson, J.E. Fractals and self similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Hentschel, H.G.E.; Procaccia, I. The infinite number of generalized dimensions of fractals and strange attractors. Physica D 1983, 8, 435–444. [Google Scholar] [CrossRef]
- Guariglia, E. Harmonic Sierpinski Gasket and Applications. Entropy 2018, 20, 714. [Google Scholar] [CrossRef]
- Guariglia, E. Entropy and Fractal Antennas. Entropy 2016, 18, 84. [Google Scholar] [CrossRef]
- Plotnick, R.E.; Gardner, R.H.; Hargrove, W.W.; Prestegaard, K.; Perlmutter, M. Lacunarity analysis: A general technique for the analysis of spatial patterns. Phys. Rev. E 1996, 53, 5461–5468. [Google Scholar] [CrossRef]
- Kubacki, R.; Czyżewski, M.; Laskowski, D. Minkowski Island and Crossbar Fractal Microstrip Antennas for Broadband Applications. Appl. Sci. 2018, 8, 334. [Google Scholar] [CrossRef]
- Falconer, K.J. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Hénon, M. A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 1976, 50, 69–77. [Google Scholar] [CrossRef]
- Tirnakli, U. Two-dimensional maps at the edge of chaos: Numerical results for the Henon map. Phys. Rev. E 2002, 66, 066212. [Google Scholar] [CrossRef] [PubMed]
- Di Lena, G.; Franco, D.; Martelli, M.; Messano, B. From Chaos to Global Convergence. Mediterr. J. Math. 2011, 8, 473–489. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guariglia, E. Primality, Fractality, and Image Analysis. Entropy 2019, 21, 304. https://doi.org/10.3390/e21030304
Guariglia E. Primality, Fractality, and Image Analysis. Entropy. 2019; 21(3):304. https://doi.org/10.3390/e21030304
Chicago/Turabian StyleGuariglia, Emanuel. 2019. "Primality, Fractality, and Image Analysis" Entropy 21, no. 3: 304. https://doi.org/10.3390/e21030304
APA StyleGuariglia, E. (2019). Primality, Fractality, and Image Analysis. Entropy, 21(3), 304. https://doi.org/10.3390/e21030304