The Weibull-Gamma Distribution: Properties and Applications
Abstract
:1. Introduction
2. The Weibull-Generated Family
3. The Weibull-Gamma Distribution
4. Some Special Cases of the Weibull-Gamma Distribution
- If , the W-g distribution reduces to the standard exponential distribution, with pdf as follows
- When in the W-g model, the gamma distribution in Equation (2) with shape parameter k and scale parameter s is obtained.
- If , the W-g distribution reduces to the exponential-gamma distribution, with pdf as follows
5. Properties
5.1. Useful Expansions
5.2. Quantile Function
5.3. Moments
5.4. Moment Generating Function
5.5. Characteristic Function
6. Parameter Estimation for Weibull-Gamma Distribution
7. Simulation Study
- Case I: , and
- Case II:
8. Applications
8.1. First Dataset
8.2. Second Dataset
8.3. Third Dataset
8.4. Fourth Dataset
8.5. Fifth Dataset
9. Conclusions
Funding
Conflicts of Interest
Abbreviations
cdf | cumulative distribution function |
probability density function | |
RV | random variable |
MLE | maximum likelihood estimator |
W-G | Weibull-generated |
W-g | Weibull-gamma |
EG | exponentiated gamma |
EE | exponentiated exponential |
AIC | Akaike Information Criterion |
RMSE | root mean squared error |
References
- Lee, C.; Famoye, F.; Alzaatreh, A.Y. Methods for generating families of univariate continuous distributions in the recent decades. Wiley Interdiscip. Rev. Comput. Stat. 2013, 5, 219–238. [Google Scholar] [CrossRef]
- Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions. Metron 2013, 71, 63–79. [Google Scholar] [CrossRef]
- Alzaatreh, A.; Famoye, F.; Lee, C. The gamma-normal distribution: Properties and applications. Comput. Stat. Data Anal. 2014, 69, 67–80. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Ortega, E.M.; Popović, B.V.; Pescim, R.R. The Lomax generator of distributions: Properties, minification process and regression model. Appl. Math. Comput. 2014, 247, 465–486. [Google Scholar] [CrossRef]
- Cakmakyapan, S.; Ozel, G. The Lindley family of distributions: Properties and applications. Hacet. J. Math. Stat. 2016, 46, 1–27. [Google Scholar] [CrossRef]
- Alizadeh, M.; Cordeiro, G.M.; Pinho, L.G.B.; Ghosh, I. The Gompertz-G family of distributions. J. Stat. Theory Pract. 2017, 11, 179–207. [Google Scholar] [CrossRef]
- Nasir, M.A.; Tahir, M.; Jamal, F.; Ozel, G. A new generalized Burr family of distributions for the lifetime data. J. Stat. Appl. Probab. 2017, 6, 401–417. [Google Scholar] [CrossRef]
- Hassan, A.S.; Nassr, S.G. Power Lindley-G Family of Distributions. In Annals of Data Science; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–22. [Google Scholar]
- Cordeiro, G.M.; Afify, A.Z.; Ortega, E.M.; Suzuki, A.K.; Mead, M.E. The odd Lomax generator of distributions: Properties, estimation and applications. J. Comput. Appl. Math. 2019, 347, 222–237. [Google Scholar] [CrossRef]
- Gupta, R.C.; Gupta, P.L.; Gupta, R.D. Modeling failure time data by Lehman alternatives. Commun. Stat. Theory Methods 1998, 27, 887–904. [Google Scholar] [CrossRef]
- Nadarajah, S.; Gupta, A.K. The exponentiated gamma distribution with application to drought data. Calcutta Stat. Assoc. Bull. 2007, 59, 29–54. [Google Scholar] [CrossRef]
- Alzaghal, A.; Famoye, F.; Lee, C. Exponentiated T-X family of distributions with some applications. Int. J. Stat. Probab. 2013, 2, 31. [Google Scholar] [CrossRef]
- Bourguignon, M.; Silva, R.B.; Cordeiro, G.M. The Weibull-G family of probability distributions. J. Data Sci. 2014, 12, 53–68. [Google Scholar]
- Nasiru, S.; Luguterah, A. The new weibull-pareto distribution. Pak. J. Stat. Oper. Res. 2015, 11, 103–114. [Google Scholar] [CrossRef]
- Tahir, M.; Zubair, M.; Mansoor, M.; Cordeiro, G.M.; Alizadeh, M.; Hamedani, G. A new Weibull-G family of distributions. Hacet. J. Math. Stat. 2016, 45, 629–647. [Google Scholar] [CrossRef]
- Alzaatreh, A.; Ghosh, I. On the Weibull-X family of distributions. J. Stat. Theory Appl. 2014, 14, 169–183. [Google Scholar]
- Cordeiro, G.M.; Ortega, E.M.; Ramires, T.G. A new generalized Weibull family of distributions: Mathematical properties and applications. J. Stat. Distrib. Appl. 2015, 2, 13. [Google Scholar] [CrossRef]
- Alzaatreh, A.; Famoye, F.; Lee, C. Weibull-Pareto distribution and its applications. Commun. Stat. Theory Methods 2013, 42, 1673–1691. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, S.; Ahmed, A. Characterization and Estimation of Weibull-Rayleigh Distribution with Applications to Life Time Data. Appl. Math. Inf. Sci. Lett. 2017, 5, 71–79. [Google Scholar] [CrossRef]
- Nadarajah, S.; Cordeiro, G.M.; Ortega, E.M. The Zografos–Balakrishnan-G family of distributions: Mathematical properties and applications. Commun. Stat. Theory Methods 2015, 44, 186–215. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Gupta, R.D.; Kundu, D. Exponentiated exponential family: An alternative to gamma and Weibull distributions. Biom. J. J. Math. Methods Biosci. 2001, 43, 117–130. [Google Scholar] [CrossRef]
- Nadarajah, S.; Rocha, R. Newdistns: An R package for new families of distributions. J. Stat. Softw. 2016, 69, 1–32. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Meeker, W.Q.; Escobar, L.A. Statistical Methods for Reliability Data; John Wiley & Sons Inc.: New York, NY, USA, 1998. [Google Scholar]
- Aarset, M.V. How to identify a bathtub hazard rate. IEEE Trans. Reliab. 1987, 36, 106–108. [Google Scholar] [CrossRef]
- Pinho, L.G.B.; Cordeiro, G.M.; Nobre, J.S. The Harris extended exponential distribution. Commun. Stat. Theory Methods 2015, 44, 3486–3502. [Google Scholar] [CrossRef]
- Nassar, M.; Nada, N. The beta generalized Pareto distribution. J. Stat. Adv. Theory Appl. 2011, 6, 1–17. [Google Scholar]
Sample Size | Parameter | Case I | Case II | ||||
---|---|---|---|---|---|---|---|
MLE | Bias | RMSE | MLE | Bias | RMSE | ||
c | 1.8567 | 0.3567 | 1.3371 | 2.4955 | 0.6955 | 1.8919 | |
0.9846 | 0.4846 | 1.2006 | 0.8371 | 0.5371 | 1.1462 | ||
k | 0.8473 | 0.3473 | 0.9991 | 0.7038 | 0.2038 | 0.7729 | |
s | 0.3492 | −0.0508 | 1.0025 | 0.3349 | −0.0651 | 0.9125 | |
c | 1.6269 | 0.1269 | 0.8466 | 1.9732 | 0.1732 | 1.0898 | |
0.7970 | 0.2970 | 0.8186 | 0.5303 | 0.2303 | 0.6201 | ||
k | 0.6396 | 0.1396 | 0.5129 | 0.6788 | 0.1788 | 0.5824 | |
s | 0.4629 | 0.0629 | 0.9147 | 0.3931 | −0.0069 | 0.8175 | |
c | 1.5168 | 0.0168 | 0.4565 | 1.7818 | −0.0182 | 0.4919 | |
0.7535 | 0.2535 | 0.7530 | 0.3760 | 0.0760 | 0.2767 | ||
k | 0.5373 | 0.0373 | 0.2011 | 0.5534 | 0.0534 | 0.2481 | |
s | 0.4577 | 0.0577 | 0.4976 | 0.4053 | 0.0053 | 0.4096 |
Distribution | gamma | Weibull | EE | EG | W-g |
---|---|---|---|---|---|
Parameter estimates | |||||
Log-likelihood | −46.8656 | −46.1587 | −46.9569 | −44.3009 | −42.1281 |
AIC | 97.7311 | 96.3175 | 97.9139 | 94.6018 | 92.2563 |
Distribution | gamma | Weibull | EE | EG | W-g |
---|---|---|---|---|---|
Parameter estimates | |||||
Log-likelihood | −240.1902 | −241.0018 | −239.9952 | −237.314 | −231.7916 |
AIC | 484.3804 | 486.0037 | 483.9903 | 480.628 | 471.5832 |
Distribution | gamma | Weibull | EE | EG | W-g |
---|---|---|---|---|---|
Parameter estimates | |||||
Log-likelihood | −185.0207 | −184.3138 | −185.113 | −182.4996 | −180.267 |
AIC | 374.0413 | 372.6277 | 374.2259 | 370.9992 | 368.5341 |
Distribution | gamma | Weibull | EE | EG | W-g |
---|---|---|---|---|---|
Parameter estimates | |||||
Log-likelihood | −295.8994 | −296.9001 | −295.666 | −295.2987 | −293.5914 |
AIC | 595.7988 | 597.8003 | 595.332 | 596.5974 | 595.1828 |
Distribution | gamma | Weibull | EE | EG | W-g |
---|---|---|---|---|---|
Parameter estimates | |||||
Log-likelihood | −193.0820 | −197.2905 | −191.2235 | −190.3999 | −188.3944 |
AIC | 390.164 | 398.5811 | 386.4471 | 386.7998 | 384.7887 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klakattawi, H.S. The Weibull-Gamma Distribution: Properties and Applications. Entropy 2019, 21, 438. https://doi.org/10.3390/e21050438
Klakattawi HS. The Weibull-Gamma Distribution: Properties and Applications. Entropy. 2019; 21(5):438. https://doi.org/10.3390/e21050438
Chicago/Turabian StyleKlakattawi, Hadeel S. 2019. "The Weibull-Gamma Distribution: Properties and Applications" Entropy 21, no. 5: 438. https://doi.org/10.3390/e21050438
APA StyleKlakattawi, H. S. (2019). The Weibull-Gamma Distribution: Properties and Applications. Entropy, 21(5), 438. https://doi.org/10.3390/e21050438