Current Correlations in a Quantum Dot Ring: A Role of Quantum Interference
Abstract
:1. Introduction
2. Calculations of Currents and Their Correlations in Triangular Quantum Dot System
2.1. Model
2.2. Calculation of Currents
2.3. Calculation of Current Correlations
3. Bond Currents and Their Correlations: Driven Circular Current in the Case of
4. Persistent Current and Its Noise: The Case
5. Correlation of Persistent and Transport Currents, and
6. Summary
Author Contributions
Funding
Conflicts of Interest
Appendix A. Coupling to Atomic Chain Electrodes: Analytical Results
References and Note
- Webb, R.A.; Washburn, S.; Umbach, C.P.; Laibowitz, R.B. Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings. Phys. Rev. Lett. 1985, 54, 2696–2699. [Google Scholar] [CrossRef]
- Ji, Y.; Chung, Y.; Sprinzak, D.; Heiblum, M.; Mahalu, D.; Shtrikman, H. An electronic Mach-–Zehnder interferometer. Nature 2003, 422, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Cardamone, D.M.; Stafford, C.A.; Mazumdar, S. Controlling Quantum Transport through a Single Molecule. Nano Lett. 2006, 6, 2422–2426. [Google Scholar] [CrossRef] [Green Version]
- Solomon, G.C.; Andrews, D.Q.; Hansen, T.; Goldsmith, R.H.; Wasielewski, M.R.; Van Duyne, R.P.; Ratner, M.A. Understanding quantum interference in coherent molecular conduction. J. Chem. Phys. 2008, 129, 054701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, S.H.; Yang, W.; Baranger, H.U. Quantum-Interference-Controlled Molecular Electronics. Nano Lett. 2008, 8, 3257–3261. [Google Scholar] [CrossRef] [Green Version]
- Donarini, A.; Begemann, G.; Grifoni, M. All-Electric Spin Control in Interference Single Electron Transistors. Nano Lett. 2009, 9, 2897–2902. [Google Scholar] [CrossRef] [Green Version]
- Rai, D.; Hod, O.; Nitzan, A. Circular currents in molecular wires. J. Phys. Chem. C 2010, 114, 20583–20594. [Google Scholar] [CrossRef]
- Hong, W.; Valkenier, H.; Mészáros, G.; Manrique, D.Z.; Mishchenko, A.; Putz, A.; García, P.M.; Lambert, C.J.; Hummelen, J.C.; Wandlowski, T. An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein J. Nanotechnol. 2011, 2, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Guédon, C.M.; Valkenier, H.; Markussen, T.; Thygesen, K.S.; Hummelen, J.C.; van der Molen, S.J. Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 2012, 7, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Lambert, C.J. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 2015, 44, 875–888. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Wang, F.; Hong, W. Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application. Accounts Chem. Res. 2019, 52, 151–160. [Google Scholar] [CrossRef]
- Nakanishi, S.; Tsukada, M. Large Loop Current Induced Inside the Molecular Bridge. Jpn. J. Appl. Phys. 1998, 37, L1400–L1402. [Google Scholar] [CrossRef]
- Nakanishi, S.; Tsukada, M. Quantum Loop Current in a C60 Molecular Bridge. Phys. Rev. Lett. 2001, 87, 126801. [Google Scholar] [CrossRef] [PubMed]
- Daizadeh, I.; Guo, J.X.; Stuchebrukhov, A. Vortex structure of the tunneling flow in long-range electron transfer reactions. J. Chem. Phys. 1999, 110, 8865–8868. [Google Scholar] [CrossRef]
- Xue, Y.; Ratner, M.A. Local field effects in current transport through molecular electronic devices: Current density profiles and local nonequilibrium electron distributions. Phys. Rev. B 2004, 70, 081404. [Google Scholar] [CrossRef] [Green Version]
- Stefanucci, G.; Perfetto, E.; Bellucci, S.; Cini, M. Generalized waveguide approach to tight-binding wires: Understanding large vortex currents in quantum rings. Phys. Rev. B 2009, 79, 073406. [Google Scholar] [CrossRef]
- Rai, D.; Hod, O.; Nitzan, A. Magnetic field control of the current through molecular ring junctions. J. Phys. Chem. Lett. 2011, 2, 2118–2124. [Google Scholar] [CrossRef]
- Rai, D.; Hod, O.; Nitzan, A. Magnetic fields effects on the electronic conduction properties of molecular ring structures. Phys. Rev. B 2012, 85, 155440. [Google Scholar] [CrossRef]
- Yadalam, H.K.; Harbola, U. Controlling local currents in molecular junctions. Phys. Rev. B 2016, 94, 115424. [Google Scholar] [CrossRef] [Green Version]
- Nozaki, D.; Schmidt, W.G. Current density analysis of electron transport through molecular wires in open quantum systems. J. Comput. Chem. 2017, 38, 1685–1692. [Google Scholar] [CrossRef] [PubMed]
- Patra, M.; Maiti, S.K. Modulation of circular current and associated magnetic field in a molecular junction: A new approach. Sci. Rep. 2017, 7, 43343. [Google Scholar] [CrossRef] [PubMed]
- Cabra, G.; Jensen, A.; Galperin, M. On simulation of local fluxes in molecular junctions. J. Chem. Phys. 2018, 148, 204103. [Google Scholar] [CrossRef] [PubMed]
- Moskalets, M.V. Temperature-induced current in a one-dimensional ballistic ring with contacts. Europhys. Lett. (EPL) 1998, 41, 189–194. [Google Scholar] [CrossRef]
- Chung, V.S.W.; Samuelsson, P.; Buttiker, M. Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers. Phys. Rev. B 2005, 72, 125320. [Google Scholar] [CrossRef] [Green Version]
- Büttiker, M.; Samuelsson, P. Interference of independently emitted electrons in quantum shot noise. Ann. Phys. 2007, 16, 751–766. [Google Scholar] [CrossRef]
- Pilgram, S.; Samuelsson, P.; Förster, H.; Büttiker, M. Full-Counting Statistics for Voltage and Dephasing Probes. Phys. Rev. Lett. 2006, 97, 066801. [Google Scholar] [CrossRef] [Green Version]
- Förster, H.; Pilgram, S.; Büttiker, M. Decoherence and full counting statistics in a Mach-Zehnder interferometer. Phys. Rev. B 2005, 72, 075301. [Google Scholar] [CrossRef] [Green Version]
- Förster, H.; Samuelsson, P.; Pilgram, S.; Büttiker, M. Voltage and dephasing probes in mesoscopic conductors: A study of full-counting statistics. Phys. Rev. B 2007, 75, 035340. [Google Scholar] [CrossRef] [Green Version]
- Bauerle, C.; Glattli, D.C.; Meunier, T.; Portier, F.; Roche, P.; Roulleau, P.; Takada, S.; Waintal, X. Coherent control of single electrons: A review of current progress. Rep. Prog. Phys. 2018, 81, 056503. [Google Scholar] [CrossRef] [PubMed]
- Lesovik, G.B. Excess quantum noise in two-dimensional ballistic microcontacts. Pis’ma Zh. Eksp. Teor. Fiz. 1989, 49, 513–515. [Google Scholar]
- Haug, H.; Jauho, A.P. Quantum Kinetics in Transport and Optics of Semiconductors; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Blanter, Y.; Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 2000, 336, 1–166. [Google Scholar] [CrossRef] [Green Version]
- Levitov, L.S.; Lesovik, G.B. Charge-transport statistics in quantum conductors. Pis’ma Zh. Eksp. Teor. Fiz. 1992, 55, 534–537. [Google Scholar]
- Lesovik, G.B.; Sadovskyy, I.A. Scattering matrix approach to the description of quantum electron transport. Physics-Uspekhi 2011, 54, 1007–1059. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.; Landauer, R. Wave-packet approach to noise in multichannel mesoscopic systems. Phys. Rev. B 1992, 45, 1742–1755. [Google Scholar] [CrossRef]
- Jayannavar, A.M.; Singha Deo, P. Persistent currents in the presence of a transport current. Phys. Rev. B 1995, 51, 10175–10178. [Google Scholar] [CrossRef] [Green Version]
- One can define the driven current as [7]: Idr=(I12l12-I13l13)/(l12+l13), where l12,l13 denotes the length of the upper and the lower branch. For I13→0 one gets a finite circular current, what is an artefact.
- Bułka, B.R. Current and power spectrum in a magnetic tunnel device with an atomic-size spacer. Phys. Rev. B 2000, 62, 1186–1192. [Google Scholar] [CrossRef] [Green Version]
- Büttiker, M.; Stafford, C.A. Charge Transfer Induced Persistent Current and Capacitance Oscillations. Phys. Rev. Lett. 1996, 76, 495–498. [Google Scholar] [CrossRef] [Green Version]
- Cedraschi, P.; Büttiker, M. Suppression of level hybridization due to Coulomb interactions. J. Phys. Condens. Matter 1998, 10, 3985–4000. [Google Scholar] [CrossRef] [Green Version]
- Cedraschi, P.; Ponomarenko, V.V.; Büttiker, M. Zero-Point Fluctuations and the Quenching of the Persistent Current in Normal Metal Rings. Phys. Rev. Lett. 2000, 84, 346–349. [Google Scholar] [CrossRef] [Green Version]
- Cedraschi, P.; Buttiker, M. Zero-point fluctuations in the ground state of a mesoscopic normal ring. Ann. Phys. 2000, 289, 165312. [Google Scholar] [CrossRef]
- Semenov, A.G.; Zaikin, A.D. Fluctuations of persistent current. J. Phys. Condens. Matter 2010, 22, 485302. [Google Scholar] [CrossRef] [Green Version]
- Semenov, A.G.; Zaikin, A.D. Persistent current noise and electron-electron interactions. Phys. Rev. B 2011, 84, 045416. [Google Scholar] [CrossRef]
- Semenov, A.G.; Zaikin, A.D. Persistent currents in quantum phase slip rings. Phys. Rev. B 2013, 88, 054505. [Google Scholar] [CrossRef]
- Semenov, A.G.; Zaikin, A.D. Quantum phase slip noise. Phys. Rev. B 2016, 94, 014512. [Google Scholar] [CrossRef] [Green Version]
- Moskalets, M. Persistent currents in ballistic normal-metal rings. Low Temp. Phys. 2010, 36, 982–989. [Google Scholar] [CrossRef] [Green Version]
- Komnik, A.; Langhanke, G.W. Full counting statistics of persistent current. Phys. Rev. B 2014, 90, 165107. [Google Scholar] [CrossRef] [Green Version]
- Saha, M.; Maiti, S.K. Circulating current in 1D Hubbard rings with long-range hopping: Comparison between exact diagonalization method and mean-field approach. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 84, 118–134. [Google Scholar] [CrossRef] [Green Version]
- Imry, Y. Introduction to Mesoscopic Physics; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Cheung, H.F.; Gefen, Y.; Riedel, E.K.; Shih, W.H. Persistent currents in small one-dimensional metal rings. Phys. Rev. B 1988, 37, 6050–6062. [Google Scholar] [CrossRef]
- Nazarov, Y.V.; Blanter, Y.M. Quantum Transport: Introduction to Nanoscience; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Schoeller, H.; Schön, G. Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction. Phys. Rev. B 1994, 50, 18436–18452. [Google Scholar] [CrossRef] [Green Version]
- König, J.; Schmid, J.; Schoeller, H.; Schön, G. Resonant tunneling through ultrasmall quantum dots: Zero-bias anomalies, magnetic-field dependence, and boson-assisted transport. Phys. Rev. B 1996, 54, 16820–16837. [Google Scholar] [CrossRef] [Green Version]
- Thielmann, A.; Hettler, M.H.; König, J.; Schön, G. Cotunneling Current and Shot Noise in Quantum Dots. Phys. Rev. Lett. 2005, 95, 146806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamenev, A. Field Theory of Non-Equilibrium Systems; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Gogolin, A.O.; Komnik, A. Towards full counting statistics for the Anderson impurity model. Phys. Rev. B 2006, 73, 195301. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bułka, B.R.; Łuczak, J. Current Correlations in a Quantum Dot Ring: A Role of Quantum Interference. Entropy 2019, 21, 527. https://doi.org/10.3390/e21050527
Bułka BR, Łuczak J. Current Correlations in a Quantum Dot Ring: A Role of Quantum Interference. Entropy. 2019; 21(5):527. https://doi.org/10.3390/e21050527
Chicago/Turabian StyleBułka, Bogdan R., and Jakub Łuczak. 2019. "Current Correlations in a Quantum Dot Ring: A Role of Quantum Interference" Entropy 21, no. 5: 527. https://doi.org/10.3390/e21050527
APA StyleBułka, B. R., & Łuczak, J. (2019). Current Correlations in a Quantum Dot Ring: A Role of Quantum Interference. Entropy, 21(5), 527. https://doi.org/10.3390/e21050527