Directionally-Unbiased Unitary Optical Devices in Discrete-Time Quantum Walks
Abstract
:1. Introduction
2. Two-Dimensional Linear Optical Devices
2.1. Lossless Optical Beam Splitter
2.2. Directionality of a Beam Splitter
2.3. 2 × 2 Integrated Directional Waveguide Coupler
2.4. Interferometers as Two-Dimensional Devices
2.4.1. Mach–Zehnder Interferometer
2.4.2. Michelson Interferometer
3. Three- and Four-Dimensional Linear Optical Devices
3.1. Reck Decomposition Design
3.2. Clements Decomposition Design
3.3. Integrated Optical Tritter and Quarter
4. Directionally-Unbiased Linear-Optical Designs
4.1. Directionally-Unbiased Linear-Optical Three- and Four-Port Devices
4.2. Constructing Reversible Optical Tritter and Quarter
5. Discrete-Time Quantum Walks
5.1. Coin Walk: Quantum Walk on Vertices
5.2. Scattering Quantum Walk: Quantum Walk on Edges
5.3. Higher Dimensional Coin Operators and Scattering Vertices
5.4. Equivalence between Higher Dimensional Coin Walk and Scattering Quantum Walk
5.5. Examples of Multi-Dimensional Quantum Walks on Graphs
6. Specific Transfer Matrix Examples Using Reversible Linear-Optical Devices
6.1. The Fourier Coin Realization
6.2. The Grover Coin Realization
7. Comparison between Directional- and Directionally-Unbiased Devices
8. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999, 41, 303–332. [Google Scholar] [CrossRef]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Knill, E.; Laflamme, R.; Milburn, G.J. A scheme for efficient quantum computation with linear optics. Nature 2001, 409, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Kempe, J. Quantum random walks: An introductory overview. Contemp. Phys. 2003, 44, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Venegas-Andraca, S.E. Quantum walks: A comprehensive review. Quant. Inf. Proc. 2012, 11, 1015–1106. [Google Scholar] [CrossRef]
- Aharonov, Y.; Davidovich, L.; Zagury, N. Quantum random walks. Phys. Rev. A 1993, 48, 1687–1690. [Google Scholar] [CrossRef] [PubMed]
- Portugal, R. Quantum Walks and Search Algorithms; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Childs, A.M. Universal computation by quantum walk. Phys. Rev. Lett. 2009, 102, 180501. [Google Scholar] [CrossRef] [PubMed]
- Carolan, J.; Harrold, C.; Sparrow, C.; Martín-López, E.; Russell, N.J.; Silverstone, J.W.; Shadbolt, P.J.; Matsuda, N.; Oguma, M.; Itoh, M.; et al. Universal linear optics. Science 2015, 349, 711–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Paesani, S.; Ding, Y.; Santagati, R.; Skrzypczyk, P.; Salavrakos, A.; Tura, J.; Augusiak, R.; Mančinska, L.; Bacco, D.; et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 2018, 360, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Reck, M.; Zeilinger, A.; Bernstein, H.J.; Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 1994, 73, 58–61. [Google Scholar] [CrossRef]
- Clements, W.R.; Humphreys, P.C.; Metcalf, B.J.; Kolthammer, W.S.; Walmsley, I.A. Optimal design for universal multiport interferometers. Optica 2016, 3, 1460–1465. [Google Scholar] [CrossRef]
- Spring, J.B.; Metcalf, B.J.; Humphreys, P.C.; Kolthammer, W.S.; Jin, X.M.; Barbieri, M.; Datta, A.; Thomas-Peter, N.; Langford, N.K.; Kundys, D.; et al. Boson sampling on a photonic chip. Science 2013, 339, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Broome, M.A.; Fedrizzi, A.; Rahimi-Keshari, S.; Dove, J.; Aaronson, S.; Ralph, T.C.; White, A.G. Photonic boson sampling in a tunable circuit. Science 2013, 339, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Tillmann, M.; Dakić, B.; Heilmann, R.; Nolte, S.; Szameit, A.; Walther, P. Experimental boson sampling. Nat. Photonics 2013, 7, 540. [Google Scholar] [CrossRef]
- Crespi, A.; Osellame, R.; Ramponi, R.; Brod, D.J.; Galvao, E.F.; Spagnolo, N.; Vitelli, C.; Maiorino, E.; Mataloni, P.; Sciarrino, F. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics 2013, 7, 545. [Google Scholar] [CrossRef]
- Weihs, G.; Reck, M.; Weinfurter, H.; Zeilinger, A. All-fiber three-path Mach–Zehnder interferometer. Opt. Lett. 1996, 21, 302–304. [Google Scholar] [CrossRef]
- Peruzzo, A.; Laing, A.; Politi, A.; Rudolph, T.; O’brien, J.L. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2011, 2, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spagnolo, N.; Vitelli, C.; Aparo, L.; Mataloni, P.; Sciarrino, F.; Crespi, A.; Ramponi, R.; Osellame, R. Three-photon bosonic coalescence in an integrated tritter. Nat. Commun. 2013, 4, 1606. [Google Scholar] [CrossRef] [Green Version]
- Meany, T.; Delanty, M.; Gross, S.; Marshall, G.D.; Steel, M.; Withford, M.J. Non-classical interference in integrated 3D multiports. Opt. Express 2012, 20, 26895–26905. [Google Scholar] [CrossRef]
- Moore, C.; Russell, A. Quantum walks on the hypercube. In Randomization and Approximation Techniques in Computer Science; Springer: Berlin/Heidelberg, Germany, 2002; pp. 164–178. [Google Scholar]
- Krovi, H.; Brun, T.A. Hitting time for quantum walks on the hypercube. Phys. Rev. A 2006, 73, 032341. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.M.; Farhi, E.; Gutmann, S. An example of the difference between quantum and classical random walks. Quant. Inf. Proc. 2002, 1, 35–43. [Google Scholar] [CrossRef]
- Childs, A.M.; Cleve, R.; Deotto, E. Exponential algorithmic speedup by a quantum walk. In Proceedings of the 35th ACM Symposium on Theory of Computing, San Diego, CA, USA, 9–11 June 2003; pp. 59–68. [Google Scholar]
- Ambainis, A. Quantum walk algorithm for element distinctness. SIAM J. Comput. 2007, 37, 210–239. [Google Scholar] [CrossRef]
- Magniez, F.; Santha, M.; Szegedy, M. Quantum algorithms for the triangle problem. SIAM J. Comput. 2007, 37, 413–424. [Google Scholar] [CrossRef]
- Buhrman, H.; Špalek, R. Quantum verification of matrix products. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, Miami, FL, USA, 22–26 January 2006; pp. 880–889. [Google Scholar]
- Magniez, F.; Nayak, A. Quantum complexity of testing group commutativity. Algorithmica 2007, 48, 221–232. [Google Scholar] [CrossRef]
- Bouwmeester, D.; Marzoli, I.; Karman, G.P.; Schleich, W.; Woerdman, J. Optical galton board. Phys. Rev. A 1999, 61, 013410. [Google Scholar] [CrossRef]
- Knight, P.L.; Roldán, E.; Sipe, J.E. Optical cavity implementations of the quantum walk. Opt. Commun. 2003, 227, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Knight, P.L.; Roldán, E.; Sipe, J. Quantum walk on the line as an interference phenomenon. Phys. Rev. A 2003, 68, 020301. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, A.; Cassemiro, K.N.; Potoček, V.; Gábris, A.; Mosley, P.J.; Andersson, E.; Jex, I.; Silberhorn, C. Photons walking the line: A quantum walk with adjustable coin operations. Phys. Rev. Lett. 2010, 104, 050502. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.; Satapathy, N.; Meena, M.; Ramachandran, H. Quantum walk of light in frequency space and its controlled dephasing. Phys. Rev. A 2011, 84, 042322. [Google Scholar] [CrossRef]
- Zhao, Z.; Du, J.; Li, H.; Yang, T.; Chen, Z.B.; Pan, J.W. Implement quantum random walks with linear optics elements. arXiv Preprint, 2002; arXiv:quant-ph/0212149. [Google Scholar]
- Broome, M.A.; Fedrizzi, A.; Lanyon, B.P.; Kassal, I.; Aspuru-Guzik, A.; White, A.G. Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 2010, 104, 153602. [Google Scholar] [CrossRef]
- Goyal, S.K.; Roux, F.S.; Forbes, A.; Konrad, T. Implementing quantum walks using orbital angular momentum of classical light. Phys. Rev. Lett. 2013, 110, 263602. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, X.F.; Zou, X.B.; Liu, B.H.; Huang, Y.F.; Guo, G.C. Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons. Phys. Rev. A 2007, 75, 052310. [Google Scholar] [CrossRef]
- Cardano, F.; Massa, F.; Qassim, H.; Karimi, E.; Slussarenko, S.; Paparo, D.; de Lisio, C.; Sciarrino, F.; Santamato, E.; Boyd, R.W.; et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 2015, 1, e1500087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.; Di Franco, C.; Shi, Z.Y.; He, T.S.; Feng, Z.; Gao, J.; Sun, K.; Li, Z.M.; Jiao, Z.Q.; Wang, T.Y.; et al. Experimental quantum fast hitting on hexagonal graphs. Nat. Photonics 2018, 12, 754–758. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, A.; Gábris, A.; Rohde, P.P.; Laiho, K.; Štefaňák, M.; Potoček, V.; Hamilton, C.; Jex, I.; Silberhorn, C. A 2D quantum walk simulation of two-particle dynamics. Science 2012, 336, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.; Hillery, M. Scattering theory and discrete-time quantum walks. Phys. Lett. A 2004, 324, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Feldman, E.; Hillery, M. Modifying quantum walks: A scattering theory approach. J. Phys. A 2007, 40, 11343. [Google Scholar] [CrossRef]
- Simon, D.S.; Fitzpatrick, C.A.; Sergienko, A.V. Group transformations and entangled-state quantum gates with directionally unbiased linear-optical multiports. Phys. Rev. A 2016, 93, 043845. [Google Scholar] [CrossRef] [Green Version]
- Murnaghan, F.D. The Unitary and Rotation Groups; Lectures on Applied Mathematics; Spartan Books: Washington, DC, USA, 1962; Volume 3. [Google Scholar]
- Loudon, R. The Quantum Theory of Light; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Saleh, B.E.; Teich, M.C.; Saleh, B.E. Fundamentals of Photonics; Wiley: New York, NY, USA, 1991; Volume 22. [Google Scholar]
- Bromberg, Y.; Lahini, Y.; Morandotti, R.; Silberberg, Y. Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 2009, 102, 253904. [Google Scholar] [CrossRef]
- Sansoni, L.; Sciarrino, F.; Vallone, G.; Mataloni, P.; Crespi, A.; Ramponi, R.; Osellame, R. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 2012, 108, 010502. [Google Scholar] [CrossRef]
- Kowalevicz, A.; Sharma, V.; Ippen, E.; Fujimoto, J.G.; Minoshima, K. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Opt. Lett. 2005, 30, 1060–1062. [Google Scholar] [CrossRef]
- Suzuki, K.; Sharma, V.; Fujimoto, J.G.; Ippen, E.P.; Nasu, Y. Characterization of symmetric [3 × 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator. Opt. Express 2006, 14, 2335–2343. [Google Scholar] [CrossRef] [PubMed]
- De Guise, H.; Di Matteo, O.; Sánchez-Soto, L.L. Simple factorization of unitary transformations. Phys. Rev. A 2018, 97, 022328. [Google Scholar] [CrossRef]
- Metcalf, B.J.; Thomas-Peter, N.; Spring, J.B.; Kundys, D.; Broome, M.A.; Humphreys, P.C.; Jin, X.M.; Barbieri, M.; Kolthammer, W.S.; Gates, J.C.; et al. Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 2013, 4, 1356. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, N.; Vitelli, C.; Sansoni, L.; Maiorino, E.; Mataloni, P.; Sciarrino, F.; Brod, D.J.; Galvão, E.F.; Crespi, A.; Ramponi, R.; et al. General rules for bosonic bunching in multimode interferometers. Phys. Rev. Lett. 2013, 111, 130503. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, N.; Aparo, L.; Vitelli, C.; Crespi, A.; Ramponi, R.; Osellame, R.; Mataloni, P.; Sciarrino, F. Quantum interferometry with three-dimensional geometry. Sci. Rep. 2012, 2, 862. [Google Scholar] [CrossRef]
- Zhang, J.G.; Sharma, A.; Ni, Y.D.; Li, Z. Investigation into network architecture and modulation scheme for MIL-STD-1773 optical fiber data buses. Aircr. Eng. Aerosp. Technol. 2000, 72, 126–137. [Google Scholar] [CrossRef]
- Saleh, A.; Kogelnik, H. Reflective single-mode fiber-optic passive star couplers. J. Light. Technol. 1988, 6, 392–398. [Google Scholar] [CrossRef]
- Osawa, S.; Simon, D.S.; Sergienko, A.V. Experimental demonstration of a directionally-unbiased linear-optical multiport. Opt. Express 2018, 26, 27201–27211. [Google Scholar] [CrossRef]
- Simon, D.S.; Fitzpatrick, C.A.; Osawa, S.; Sergienko, A.V. Quantum simulation of discrete-time Hamiltonians using directionally unbiased linear optical multiports. Phys. Rev. A 2017, 95, 042109. [Google Scholar] [CrossRef] [Green Version]
- Simon, D.S.; Fitzpatrick, C.A.; Osawa, S.; Sergienko, A.V. Quantum simulation of topologically protected states using directionally unbiased linear-optical multiports. Phys. Rev. A 2017, 96, 013858. [Google Scholar] [CrossRef] [Green Version]
- Simon, D.S.; Osawa, S.; Sergienko, A.V. Joint entanglement of topology and polarization enables error-protected quantum registers. New J. Phys. 2018, 20, 093032. [Google Scholar] [CrossRef]
- Vance, R.; Barrow, R. General linear differential interferometers. J. Opt. Soc. Am. A 1995, 12, 346–353. [Google Scholar] [CrossRef]
- Schwelb, O. Generalized analysis for a class of linear interferometric networks. I. Analysis. IEEE Trans. Microw. Theory Tech. 1998, 46, 1399–1408. [Google Scholar] [CrossRef]
- Motwani, R.; Raghavan, P. Randomized algorithms. ACM Comput. Surv. 1996, 28, 33–37. [Google Scholar] [CrossRef]
- Francisco, D.; Iemmi, C.; Paz, J.; Ledesma, S. Simulating a quantum walk with classical optics. Phys. Rev. A 2006, 74, 052327. [Google Scholar] [CrossRef]
- Peruzzo, A.; Lobino, M.; Matthews, J.C.; Matsuda, N.; Politi, A.; Poulios, K.; Zhou, X.Q.; Lahini, Y.; Ismail, N.; Wörhoff, K.; et al. Quantum walks of correlated photons. Science 2010, 329, 1500–1503. [Google Scholar] [CrossRef]
- Tang, H.; Lin, X.F.; Feng, Z.; Chen, J.Y.; Gao, J.; Sun, K.; Wang, C.Y.; Lai, P.C.; Xu, X.Y.; Wang, Y.; et al. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. 2018, 4, eaat3174. [Google Scholar] [CrossRef] [Green Version]
- Venancio, B.; Andrade, F.; da Luz, M. Unveiling and exemplifying the unitary equivalence of discrete time quantum walk models. J. Phys. A 2013, 46, 165302. [Google Scholar] [CrossRef] [Green Version]
- Hillery, M.; Bergou, J.; Feldman, E. Quantum walks based on an interferometric analogy. Phys. Rev. A 2003, 68, 032314. [Google Scholar] [CrossRef] [Green Version]
- Benioff, P. Space searches with a quantum robot. arXiv Preprint, 2000; arXiv:quant-ph/0003006. [Google Scholar]
- Aaronson, S.; Ambainis, A. Quantum search of spatial regions. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, Cambridge, MA, USA, 11–14 October 2003; pp. 200–209. [Google Scholar]
- Childs, A.M.; Goldstone, J. Spatial search by quantum walk. Phys. Rev. A 2004, 70, 022314. [Google Scholar] [CrossRef]
- Tulsi, A. Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 2008, 78, 012310. [Google Scholar] [CrossRef] [Green Version]
- Abal, G.; Donangelo, R.; Marquezino, F.L.; Portugal, R. Spatial search on a honeycomb network. Math. Struct. Comp. Sci. 2010, 20, 999–1009. [Google Scholar] [CrossRef] [Green Version]
- Abal, G.; Donangelo, R.; Forets, M.; Portugal, R. Spatial quantum search in a triangular network. Math. Struct. Comp. Sci. 2012, 22, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Kempe, J. Discrete quantum walks hit exponentially faster. Probab. Theory Relat. Fields 2005, 133, 215–235. [Google Scholar] [CrossRef]
- Tregenna, B.; Flanagan, W.; Maile, R.; Kendon, V. Controlling discrete quantum walks: Coins and initial states. New J. Phys. 2003, 5, 83. [Google Scholar] [CrossRef]
Conditions | 3-port | 4-port | Rev Tritter | Rev Quarter | 3-Reck | 4-Reck | 4-Clements |
---|---|---|---|---|---|---|---|
# of Beam splitters | 3 | 4 | - | - | 12 | 20 | 20 |
Coherence Length | Long | Long | Short | Short | Short | Short | Short |
U Generation | ✘ | ✘ | ✘ | ✘ | ✔ | ✔ | ✔ |
Grover Coin | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Fourier Coin | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osawa, S.; Simon, D.S.; Sergienko, A.V. Directionally-Unbiased Unitary Optical Devices in Discrete-Time Quantum Walks. Entropy 2019, 21, 853. https://doi.org/10.3390/e21090853
Osawa S, Simon DS, Sergienko AV. Directionally-Unbiased Unitary Optical Devices in Discrete-Time Quantum Walks. Entropy. 2019; 21(9):853. https://doi.org/10.3390/e21090853
Chicago/Turabian StyleOsawa, Shuto, David S. Simon, and Alexander V. Sergienko. 2019. "Directionally-Unbiased Unitary Optical Devices in Discrete-Time Quantum Walks" Entropy 21, no. 9: 853. https://doi.org/10.3390/e21090853
APA StyleOsawa, S., Simon, D. S., & Sergienko, A. V. (2019). Directionally-Unbiased Unitary Optical Devices in Discrete-Time Quantum Walks. Entropy, 21(9), 853. https://doi.org/10.3390/e21090853