A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns
Abstract
:1. Introduction
2. Materials
2.1. Bonn Epilepsy EEG Database
2.2. Neural Mass Model
3. Scheme and Methods
3.1. Conditional Entropy of Ordinal Patterns
3.2. Variation Coefficient
3.3. k-Fold Cross-Validation
3.4. Evaluation Index
3.5. Overall Scheme
Algorithm 1: Optimizing the parameters of the Support vector machine (SVM) classifier based on 10-fold cross-validation and grid search. |
4. Results
4.1. Parameters Selection of the CEOP
4.1.1. Ordinal Pattern Order d
4.1.2. Time Delay
4.2. Performances Analysis of the CEOP
4.2.1. The Analysis Result of Signals under Different Excitability Gain Parameter A
4.2.2. The Analysis Result of Signals under Different Input Gaussian White Noise
4.3. Experimental Processes and Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Briggs, F.B.S.; Wilson, B.K.; Pyatka, N.; Colón-Zimmermann, K.; Sajatovic, M.M. Effects of a Remotely Delivered Group-Format Epilepsy Self-Management Program on Adverse Health Outcomes in Vulnerable People with Epilepsy: A Causal Mediation Analysis. Epilepsy Res. 2020, 162, 106303. [Google Scholar] [CrossRef]
- Rodríguez-Cruces, R.; Bernhardt, B.C.; Concha, L. Multidimensional Associations Between Cognition and Connectome Organization in Temporal Lobe Epilepsy. NeuroImage 2020, 213, 116706. [Google Scholar] [CrossRef]
- Budde, R.B.; Arafat, M.A.; Pederson, D.J.; Lovick, T.A.; Jefferys, J.G.R.; Irazoqui, P.P. Acid Reflux Induced Laryngospasm as a Potential Mechanism of Sudden Death in Epilepsy. Epilepsy Res. 2018, 148, 23–31. [Google Scholar] [CrossRef]
- Christiaen, E.; Goossens, M.G.; Descamps, B.; Larsen, L.E.; Boon, P.; Raedt, R.; Vanhove, C. Dynamic Functional Connectivity and Graph Theory Metrics in a Rat Model of Temporal Lobe Epilepsy Reveal a Preference for Brain States with a Lower Functional Connectivity, Segregation and Integration. Neurobiol. Dis. 2020, 139, 104808. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, C.Z.; Chen, L.H.; Liu, X.Y.; Pan, S.X.; Ju, D.S.; Ma, J.; Li, J.Y.; Wei, B. Identification of Novel Gene and Pathway Targets for Human Epilepsy Treatment. Biol. Res. 2016, 49, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurbatova, P.; Wendling, F.; Kaminska, A.; Rosati, A.; Nabbout, R.; Guerrini, R.; Dulac, O.; Pons, G.; Cornu, C.; Nony, P.; et al. Dynamic Changes of Depolarizing GABA in a Computational Model of Epileptogenic Brain: Insight for Dravet Syndrome. Exp. Neurol. 2016, 283, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Malagarriga, D.; Pons, A.J.; Villa, A.E.P. Complex Temporal Patterns Processing by a Neural Mass Model of a Cortical Column. Cogn. Neurodyn. 2019, 13, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhou, C.S.; Wang, J.; Fietkiewicz, C.; Loparo, K.A. The Role of Coupling Connections in a Model of the Cortico-Basal Ganglia-Thalamocortical Neural Loop for the Generation of Beta Oscillations. Neural Netw. 2020, 123, 381–392. [Google Scholar] [CrossRef]
- Hebbink, J.; van Gils, S.A.; Meijer, H.J.E. On Analysis of Inputs Triggering Large Nonlinear Neural Responses Slow-Fast Dynamics in the Wendling Neural Mass Model. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105103. [Google Scholar] [CrossRef]
- Jansen, B.H.; Rit, V.G. Electroencephalogram and Visual Evoked Potential Generation in a Mathematical Model of Coupled Cortical Columns. Biol. Cybern. 1995, 73, 357–366. [Google Scholar] [CrossRef]
- Sharma, M.; Patel, S.; Acharya, U.R. Automated Detection of Abnormal EEG Signals Using Localized Wavelet Filter Banks. Pattern Recognit. Lett. 2020, 133, 188–194. [Google Scholar] [CrossRef]
- Wang, G.J.; Deng, Z.H.; Choi, K.S. Detection of Epilepsy with Electroencephalogram Using Rule-Based Classifiers. Neurocomputing 2017, 228, 283–290. [Google Scholar] [CrossRef]
- Polat, K.; Günes, S. Classification of Epileptiform EEG Using a Hybrid System Based on Decision Tree Classifier and Fast Fourier Transform. Appl. Math. Comput. 2007, 187, 1017–1026. [Google Scholar] [CrossRef]
- Vézard, L.; Legrand, P.; Chavent, M.; Faïta-Aïnseba, F.; Trujillo, L. EEG Classification for the Detection of Mental States. Appl. Soft Comput. 2015, 32, 113–131. [Google Scholar] [CrossRef]
- Yuan, S.S.; Zhou, W.D.; Wu, Q.; Zhang, Y.L. Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-Based Sparse Representation. Int. J. Neural Syst. 2016, 26, 1650011. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Tsuda, T.; Lee, Y.J.; Ikeda, A.; Matsuhashi, M.; Matsumoto, R.; Kikuchi, T.; Kang, H. Pattern Recognition in Epileptic EEG Signals via Dynamic Mode Decomposition. Mathematics 2020, 8, 481. [Google Scholar] [CrossRef] [Green Version]
- Fu, K.; Qu, J.F.; Chai, Y.; Zou, T. Hilbert Marginal Spectrum Analysis for Automatic Seizure Detection in EEG Signals. Biomed. Signal Process. Control 2015, 18, 179–185. [Google Scholar] [CrossRef]
- Deriche, M.; Arafat, S.; Al-Insaif, S.; Siddiqui, M. Eigenspace Time Frequency Based Features for Accurate Seizure Detection from EEG Data. IRBM 2019, 40, 122–132. [Google Scholar] [CrossRef]
- Nascimento, D.C.; Depetri, G.; Stefano, L.H.; Anacleto, O.; Leite, J.P.; Edwards, D.J.; Santos, T.E.G.; Neto, F.L. Entropy Analysis of High-Definition Transcranial Electric Stimulation Effects on EEG Dynamics. Brain Sci. 2020, 9, 208. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez-Molina, A.J.; Iglesias-Parro, S.; Escudero, J. Differential Effects of Simulated Cortical Network Lesions on Synchrony and EEG Complexity. Int. J. Neural Syst. 2019, 29, 1850024. [Google Scholar]
- Echegoyen, I.; López-Sanz, D.; Martínez, J.H.; Maestú, F.; Buldú, J.M. Permutation Entropy and Statistical Complexity in Mild Cognitive Impairment and Alzheimer’s Disease: An Analysis Based on Frequency Bands. Entropy 2020, 22, 116. [Google Scholar] [CrossRef] [Green Version]
- Harezlak, K.; Kasprowski, P. Application of Time-Scale Decomposition of Entropy for Eye Movement Analysis. Entropy 2020, 22, 168. [Google Scholar] [CrossRef] [Green Version]
- Hussain, W.; Wang, B.; Niu, Y.; Gao, Y.; Wang, X.; Sun, J.; Zhang, Q.H.; Cao, R.; Zhou, M.N.; Iqbal, M.S.; et al. Epileptic Seizure Detection With Permutation Fuzzy Entropy Using Robust Machine Learning Techniques. IEEE Access 2019, 7, 182238182258. [Google Scholar] [CrossRef]
- Nicolini, C.; Forcellini, G.; Minati, L.; Bifone, A. Scale-Resolved Analysis of Brain Functional Connectivity Networks with Spectral Entropy. NeuroImage 2020, 211, 116603. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, G.; Gao, J.; Gao, Q. A Quantitative Analysis for EEG Signals Based on Modified Permutation-Entropy. IRBM 2017, 38, 71–77. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.Y.; Sun, C.X.; Chen, Z.M.; Hayat, T.; Alsaedi, A. A New Closed-Loop Strategy for Detection and Modulation of Epileptiform Spikes Based on Cross Approximate Entropy. J. Integr. Neurosci. 2018, 17, 271–280. [Google Scholar]
- Unakafov, A.M.; Keller, K. Conditional Entropy of Ordinal Patterns. Physica D 2014, 269, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Keller, K.; Unakafov, A.M.; Unakafova, V.A. Ordinal Patterns, Entropy, and EEG. Entropy 2014, 16, 6212–6239. [Google Scholar] [CrossRef]
- Unakafov, A.M.; Keller, K. Change-Point Detection Using the Conditional Entropy of Ordinal Patterns. Entropy 2018, 20, 709. [Google Scholar] [CrossRef] [Green Version]
- Mougoufan, J.B.B.à.; Fouda, J.S.A.E.; Tchuente, M.; Koepf, W. Adaptive ECG Beat Classification by Ordinal Pattern Based Entropies. Commun. Nonlinear Sci. Numer. Simul. 2020, 84, 105156. [Google Scholar] [CrossRef]
- Rubega, M.; Scarpa, F.; Teodori, D.; Sejling, A.S.; Frandsen, C.S.; Sparacino, G. Detection of Hypoglycemia Using Measures of EEG Complexity in Type 1 Diabetes Patients. Entropy 2020, 22, 81. [Google Scholar] [CrossRef] [Green Version]
- Wendling, F.; Bellanger, J.J.; Bartolomei, F.; Chauvel, P. Relevance of Nonlinear Lumped-parameter Models in the Analysis of Depth-EEG Epileptic Signals. Biol. Cybern. 2000, 83, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Lopes da Silva, F.H.; Blanes, W.; Kalitzin, S.N.; Parra, J.; Suffczynski, P.; Velis, D.N. Dynamical Diseases of Brain Systems: Different Routes to Epileptic Seizures. IEEE. Trans. Biomed. Eng. 2003, 50, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Unakafova, V.A.; Keller, K. Efficiently Measuring Complexity on the Basis of Real-World Data. Entropy 2013, 15, 4392–4415. [Google Scholar] [CrossRef] [Green Version]
- Riedl, M.; Müller, A.; Wessel, N. Practical Considerations of Permutation Entropy. Eur. Phys. J. Spec. Top. 2013, 222, 249–262. [Google Scholar] [CrossRef]
- Nicolaou, N.; Georgiou, J. Detection of Epileptic Electroencephalogram Based on Permutation Entropy and Support Vector Machines. Expert Syst. Appl 2012, 39, 202–209. [Google Scholar] [CrossRef]
- Burges, C.J. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Keerthi, S.S.; Lin, C.J. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel. Neural Comput. 2003, 15, 1667–1689. [Google Scholar] [CrossRef]
- Wendling, F.; Bartolomei, F.; Bellanger, J.J.; Chauvel, P. Epileptic Fast Activity Can Be Explained by a Model of Impaired GABAergic Dendritic Inhibition. Eur. J. Neurosci. 2002, 15, 1499–1508. [Google Scholar] [CrossRef]
- Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of Nonlinear Deterministic and Finite Dimensional Structures in Time Series of Brain Electrical Activity: Dependence on Recording Region and Brain State. Phys. Rev. E 2001, 64, 061907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iscan, Z.; Dokur, Z.; Demiralp, T. Classification of Electroencephalogram Signals with Combined Time and Frequency Features. Expert Syst. Appl. 2011, 38, 10499–10505. [Google Scholar] [CrossRef]
- Swami, P.; Gandhi, T.K.; Panigrahi, B.K.; Tripathi, M.; Anand, S. A Novel Robust Diagnostic Model to Detect Seizures in Electroencephalography. Expert Syst. Appl. 2016, 56, 116–130. [Google Scholar] [CrossRef]
- Zhou, D.M.; Li, X.M. Epilepsy EEG Signal Classification Algorithm Based on Improved RBF. Front. Neurosci. 2020, 14, 606. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhou, W.D.; Yu, N.N.; Du, P.D. Denoising Sparse Autoencoder-Based Ictal EEG Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1717–1726. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, W.Z.; Zhang, T.; Li, M.Y.; You, Y.; Zheng, X. Developing Multi-Component Dictionary-Based Sparse Representation for Automatic Detection of Epileptic EEG Spikes. Biomed. Signal Process. Control 2020, 60, 101966. [Google Scholar] [CrossRef]
- Kannathal, N.; Choo, M.L.; Acharya, U.R.; Sadasivan, P.K. Entropies for Detection of Epilepsy in EEG. Comput. Methods Programs Biomed. 2005, 80, 187–194. [Google Scholar] [CrossRef]
- Subasi, A. EEG Signal Classification Using Wavelet Feature Extraction and A Mixture of Expert Model. Expert Syst. Appl. 2007, 32, 1084–1093. [Google Scholar] [CrossRef]
Data Sets | A-Z | B-O | C-N | D-F | E-S | |
---|---|---|---|---|---|---|
Category | ||||||
Experimental subject | Five healthy volunteers | Five epilepsy patients | ||||
EEG type | Scalp | Scalp | Intracranial | Intracranial | Intracranial | |
EEG | EEG | EEG | EEG | EEG | ||
Subject status | Awake, | Awake, | Inter-ictal | Inter-ictal | Ictal | |
eyes open | eyes closed | stage | stage | stage | ||
Electrode placement | International | International | Hippocampus | Within | Within | |
10-20 | 10-20 | opposite to | epileptogenic | epileptogenic | ||
system | system | hemisphere | zone | zone | ||
Number of subsets | 100 | 100 | 100 | 100 | 100 | |
Sampling points | 4097 | 4097 | 4097 | 4097 | 4097 | |
Sampling frequency | 173.61Hz | 173.61Hz | 173.61Hz | 173.61Hz | 173.61Hz |
Category | True Value | Predicted Value |
---|---|---|
TP | positive | positive |
FP | negative | positive |
TN | negative | negative |
FN | positive | negative |
Category | A (mV) | Mean | Std | ||||
---|---|---|---|---|---|---|---|
PE | MPE | CEOP | PE | MPE | CEOP | ||
Normal | 3.25 | 0.6124 | 0.6164 | 0.5590 | 0.0319 | 0.0230 | 0.0468 |
3.6 | 0.2628 | 0.2686 | 0.1031 | 0.0302 | 0.0133 | 0.0205 | |
3.8 | 0.2590 | 0.2604 | 0.0872 | 0.0135 | 0.0111 | 0.0098 | |
4.0 | 0.2660 | 0.2675 | 0.0913 | 0.0064 | 0.0053 | 0.0062 | |
Seizure | 4.2 | 0.2722 | 0.2741 | 0.0973 | 0.0132 | 0.0102 | 0.0093 |
4.4 | 0.2780 | 0.2804 | 0.1021 | 0.0164 | 0.0083 | 0.0114 | |
4.6 | 0.2810 | 0.2836 | 0.1055 | 0.0172 | 0.0042 | 0.0120 | |
4.8 | 0.2851 | 0.2879 | 0.1087 | 0.0167 | 0.0021 | 0.0120 |
Category | Mean | Std | |||||
---|---|---|---|---|---|---|---|
PE | MPE | CEOP | PE | MPE | CEOP | ||
81 | 0.6143 | 0.6184 | 0.5600 | 0.0336 | 0.0234 | 0.0510 | |
91 | 0.6109 | 0.6150 | 0.5572 | 0.0297 | 0.0207 | 0.0432 | |
Normal (A= 3.25 mV) | 101 | 0.6089 | 0.6128 | 0.5572 | 0.0327 | 0.0224 | 0.0508 |
111 | 0.6142 | 0.6187 | 0.5636 | 0.0356 | 0.0207 | 0.0514 | |
121 | 0.3455 | 0.3505 | 0.1877 | 0.0396 | 0.0281 | 0.0468 | |
81 | 0.4245 | 0.4301 | 0.3109 | 0.0565 | 0.0361 | 0.0705 | |
91 | 0.2578 | 0.2626 | 0.0994 | 0.0305 | 0.0129 | 0.0200 | |
Seizure (A= 3.8 mV) | 101 | 0.2569 | 0.2585 | 0.0857 | 0.0146 | 0.0116 | 0.0102 |
111 | 0.2690 | 0.2703 | 0.0916 | 0.0053 | 0.0042 | 0.0052 | |
121 | 0.2777 | 0.2793 | 0.0973 | 0.0120 | 0.0095 | 0.0088 |
Classification | A-Z, E-S | B-O, E-S | C-N, E-S | D-F, E-S | |
---|---|---|---|---|---|
Category | |||||
1 | 1 | 1.4142 | 2 | ||
0.0313 | 0.0313 | 0.0313 | 0.0313 | ||
(%) | 96.25 | 81.25 | 90.63 | 88.75 |
Classification | A-Z, E-S | B-O, E-S | C-N, E-S | D-F, E-S | |
---|---|---|---|---|---|
Evaluation Index | |||||
Sensitivity (%) | 100 | 80.00 | 88.46 | 86.96 | |
Specificity (%) | 89.47 | 80.00 | 100 | 82.35 | |
Accuracy (%) | 95.00 | 80.00 | 92.50 | 85.00 | |
AUC | 1 | 0.8747 | 0.9923 | 0.9565 |
Authors | Method (Features Extraction & Classifier) | Number of Extracted Features | Accuracy (%) |
---|---|---|---|
Kannathal et al. [46] | Entropy measures & | 4 | 92.22 |
(2005) | Adaptive neuro-fuzzy inference system (ANFIS) | ||
Subasi [47] | Discrete wavelet transform (DWT) & | 16 | 94.50 |
(2007) | Mixture of experts (ME) | ||
Iscan et al. [41] | Cross correlation (CC), power spectral density (PSD) & | 2 | 100 |
(2011) | Least squares support vector machine (LS-SVM) | ||
Nicolaou et al. [36] | Permutation entropy (PE) & | 1 | 93.55 |
(2012) | Support vector machine (SVM) | ||
Fu et al. [17] | Hilbert marginal spectrum analysis (HMS) & | 8 | 99.85 |
(2015) | Support vector machine (SVM) | ||
Swami et al. [42] | Dual-tree complex wavelet transform (DTCWT) & | 6 | 100 |
(2016) | General regression neural network (GRNN) | ||
Deriche et al. [18] | Singular value decomposition (SVD) & | 2 | 99.30 |
(2019) | Multilayer perceptron network (MLP) | ||
Zhou et al. [43] | Wave coefficients, entropy measures & | 4 | 96.30 |
(2020) | Improved convolution neural network (CNN) | ||
This work | Conditional entropy of ordinal patterns (CEOP) & | 1 | 95.00 |
Support vector machine (SVM) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Fu, Z. A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns. Entropy 2020, 22, 1092. https://doi.org/10.3390/e22101092
Liu X, Fu Z. A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns. Entropy. 2020; 22(10):1092. https://doi.org/10.3390/e22101092
Chicago/Turabian StyleLiu, Xian, and Zhuang Fu. 2020. "A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns" Entropy 22, no. 10: 1092. https://doi.org/10.3390/e22101092
APA StyleLiu, X., & Fu, Z. (2020). A Novel Recognition Strategy for Epilepsy EEG Signals Based on Conditional Entropy of Ordinal Patterns. Entropy, 22(10), 1092. https://doi.org/10.3390/e22101092