Fractal and Entropy Analysis of the Dow Jones Index Using Multidimensional Scaling
Abstract
:1. Introduction
2. Dataset and Methods
2.1. The DJIA Dataset
2.2. Distances
2.3. The MDS Loci
2.3.1. Data Pre-Processing Using
2.3.2. Data Pre-Processing Using
3. Fractal, Entropy, and Fractional Analysis
4. Conclusions
Funding
Conflicts of Interest
References
- Trippi, R. Chaos & Nonlinear Dynamics in the Financial Markets; Irwin Professional Publishing Company: Burr Ridge, IL, USA, 1995. [Google Scholar]
- Vialar, T. Complex and Chaotic Nonlinear Dynamics: Advances in Economics and Finance, Mathematics and Statistics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bischi, G.I.; Chiarella, C.; Gardini, L. (Eds.) Nonlinear Dynamics in Economics, Finance and the Social Sciences; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Meyers, R.A. (Ed.) Complex Systems in Finance and Econometrics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Machado, J.A.T. Calculation of Fractional Derivatives of Noisy Data with Genetic Algorithms. Nonlinear Dyn. 2009, 57, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Duarte, F.B.; Machado, J.A.T.; Duarte, G.M. Dynamics of the Dow Jones and the NASDAQ Stock Indexes. Nonlinear Dyn. 2010, 61, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.T.; Duarte, F.B.; Duarte, G.M. Analysis of stock market indices through multidimensional scaling. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4610–4618. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.A.T.; Duarte, G.M.; Duarte, F.B. Analysis of Financial Data Series Using Fractional Fourier Transform and Multidimensional Scaling. Nonlinear Dyn. 2011, 65, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.A.T.; Duarte, G.M.; Duarte, F.B. Identifying Economic Periods and Crisis with the Multidimensional Scaling. Nonlinear Dyn. 2011, 63, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.T.; Duarte, F.B.; Duarte, G.M. Analysis of Financial Indices by Means of The Windowed Fourier Transform. Signal Image Video Process. 2012, 6, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.T.; Duarte, G.M.; Duarte, F.B. Analysis of stock market indices with multidimensional scaling and wavelets. Math. Probl. Eng. 2012, 2012, 14. [Google Scholar]
- Machado, J.A.T.; Duarte, G.M.; Duarte, F.B. Fractional dynamics in financial indexes. Int. J. Bifurc. Chaos 2012, 22, 1250249. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.T.; Duarte, F.B.; Duarte, G.M. Power Law Analysis of Financial Index Dynamics. Discret. Dyn. Nat. Soc. 2012, 2012, 12. [Google Scholar]
- Da Silva, S.; Matsushita, R.; Gleria, I.; Figueiredo, A.; Rathie, P. International finance, Lévy distributions, and the econophysics of exchange rates. Commun. Nonlinear Sci. Numer. Simul. 2005, 10, 355–466. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.C. Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 2008, 36, 1305–1314. [Google Scholar] [CrossRef]
- Piqueira, J.R.C.; Mortoza, L.P.D. Complexity analysis research of financial and economic system under the condition of three parameters’ change circumstances. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1690–1695. [Google Scholar] [CrossRef]
- Ma, J.; Bangura, H.I. Complexity analysis research of financial and economic system under the condition of three parameters’ change circumstances. Nonlinear Dyn. 2012, 70, 2313–2326. [Google Scholar] [CrossRef]
- Ngounda, E.; Patidar, K.C.; Pindza, E. Contour integral method for European options with jumps. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 478–492. [Google Scholar] [CrossRef] [Green Version]
- Horwich, P. Asymmetries in Time: Problems in the Philosophy of Science; The MIT Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Reichenbach, H. The Direction of Time; University of California Press: New York, NY, USA, 1991. [Google Scholar]
- Dainton, B. Time and Space, 2nd ed.; Acumen Publishing, Limited: Chesham, UK, 2001. [Google Scholar]
- Callender, C. (Ed.) The Oxford Handbook of Philosophy of Time; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Torgerson, W. Theory and Methods of Scaling; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Shepard, R.N. The analysis of proximities: Multidimensional scaling with an unknown distance function. Psychometrika 1962, 27, 219–246. [Google Scholar] [CrossRef]
- Kruskal, J. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29, 1–27. [Google Scholar] [CrossRef]
- Sammon, J. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 1969, 18, 401–409. [Google Scholar] [CrossRef]
- Kruskal, J.B.; Wish, M. Multidimensional Scaling; Sage Publications: Newbury Park, CA, USA, 1978. [Google Scholar]
- Borg, I.; Groenen, P.J. Modern Multidimensional Scaling-Theory and Applications; Springer: New York, NY, USA, 2005. [Google Scholar]
- Saeed, N.; Nam, H.; Imtiaz, M.; Saqib, D.B.M. A Survey on Multidimensional Scaling. ACM Comput. Surv. CSUR 2018, 51, 47. [Google Scholar] [CrossRef] [Green Version]
- Mandelbrot, B.B.; Ness, J.W.V. The fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman: New York, NY, USA, 1983. [Google Scholar]
- Berry, M.V. Diffractals. J. Phys. A Math. Gen. 1979, 12, 781–797. [Google Scholar] [CrossRef]
- Lapidus, M.L.; Fleckinger-Pellé, J. Tambour fractal: Vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du Laplacien. C. R. L’Académie Sci. Paris Sér. I Math. 1988, 306, 171–175. [Google Scholar]
- Schroeder, M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise; W. H. Freeman: New York, NY, USA, 1991. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef] [Green Version]
- Khinchin, A.I. Mathematical Foundations of Information Theory; Dover: New York, NY, USA, 1957. [Google Scholar]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Rényi, A. On measures of information and entropy. In Proceedings of the fourth Berkeley Symposium on Mathematics, Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Berkeley, CA, USA, 20 June–30 July 1960; University of California Press: Berkeley, CA, USA, 1961; pp. 547–561. Available online: https://projecteuclid.org/euclid.bsmsp/1200512181 (accessed on 4 September 2020).
- Brillouin, L. Science and Information Theory; Academic Press: London, UK, 1962. [Google Scholar]
- Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Beck, C. Generalised information and entropy measures in physics. Contemp. Phys. 2009, 50, 495–510. [Google Scholar] [CrossRef]
- Gray, R.M. Entropy and Information Theory; Springer: New York, NY, USA, 2011. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Volume 204, North-Holland Mathematics Studies. In Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kochubei, A.; Luchko, Y. (Eds.) Volume 1, De Gruyter Reference. In Handbook of Fractional Calculus with Applications: Basic Theory; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Kochubei, A.; Luchko, Y. (Eds.) Volume 2, De Gruyter Reference. In Handbook of Fractional Calculus with Applications: Fractional Differential Equations; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Westerlund, S.; Ekstam, L. Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 826–839. [Google Scholar] [CrossRef]
- Grigolini, P.; Aquino, G.; Bologna, M.; Luković, M.; West, B.J. A theory of 1/f noise in human cognition. Phys. A Stat. Mech. Its Appl. 2009, 388, 4192–4204. [Google Scholar] [CrossRef]
- West, B.J.; Grigolini, P. Complex Webs: Anticipating the Improbable; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Tarasov, V. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- West, B.J. Fractional Calculus View of Complexity: Tomorrow’s Science; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Tarasov, V.E. (Ed.) Volume 4, De Gruyter Reference. In Handbook of Fractional Calculus with Applications: Applications in Physics, Part A; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Tarasov, V.E. (Ed.) Volume 5, De Gruyter Reference. In Handbook of Fractional Calculus with Applications: Applications in Physics, Part B; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Machado, J.A.T.; Mata, M.E. A multidimensional scaling perspective of Rostow’s forecasts with the track-record (1960s–2011) of pioneers and latecomers. In Dynamical Systems: Theory, Proceedings of the 12th International Conference on Dynamical Systems—Theory and Applications; Awrejcewicz, J., Kazmierczak, M., Olejnik, P., Mrozowski, J., Eds.; Łódź University of Technology: Łódź, Poland, 2013; pp. 361–378. [Google Scholar]
- Machado, J.A.T.; Mata, M.E. Analysis of World Economic Variables Using Multidimensional Scaling. PLoS ONE 2013, 10, e0121277. [Google Scholar] [CrossRef] [Green Version]
- Tenreiro Machado, J.A.; Lopes, A.M.; Galhano, A.M. Multidimensional scaling visualization using parametric similarity indices. Entropy 2015, 17, 1775–1794. [Google Scholar] [CrossRef] [Green Version]
- Mata, M.; Machado, J. Entropy Analysis of Monetary Unions. Entropy 2017, 19, 245. [Google Scholar] [CrossRef]
- Deza, M.M.; Deza, E. Encyclopedia of Distances; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Cha, S.H. Measures between Probability Density Functions. Int. J. Math. Model. Methods Appl. Sci. 2007, 1, 300–307. [Google Scholar]
- Papoulis, A. Signal Analysis; McGraw-Hill: New York, NY, USA, 1977. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W. Digital Signal Processing; Prentice Hall: Upper Saddle River, NJ, USA, 1989. [Google Scholar]
- Parzen, E. Modern Probability Theory and Its Applications; Wiley-Interscience: New York, NY, USA, 1992. [Google Scholar]
- Pollock, D.S.; Green, R.C.; Nguyen, T. (Eds.) Handbook of Time Series Analysis, Signal Processing, and Dynamics (Signal Processing and Its Applications); Academic Press: London, UK, 1999. [Google Scholar]
- Small, M. Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance; World Scientific Publishing: Singapore, 2005. [Google Scholar]
- Keene, O.N. The log transformation is special. Stat. Med. 1995, 14, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Leydesdorff, L.; Bensman, S. Classification and powerlaws: The logarithmic transformation. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 1470–1486. [Google Scholar] [CrossRef] [Green Version]
- Stango, V.; Zinman, J. Exponential Growth Bias and Household Finance. J. Financ. 2009, 64, 2807–2849. [Google Scholar] [CrossRef]
- Feng, C.; Wang, H.; Lu, N.; Chen, T.; He, H.; Lu, Y.; Tu, X.M. Log-transformation and its implications for data analysis. Shanghai Arch. Psychiatry 2014, 26, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.; Machado, J.T.; Galhano, A. Empirical Laws and Foreseeing the Future of Technological Progress. Entropy 2016, 18, 217. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.A.T. Complex Dynamics of Financial Indices. Nonlinear Dyn. 2013, 74, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.A.T. Relativistic Time Effects in Financial Dynamics. Nonlinear Dyn. 2014, 75, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A 2009, 373, 2516–2519. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.A.T. Fractional Order Generalized Information. Entropy 2014, 16, 2350–2361. [Google Scholar] [CrossRef] [Green Version]
- Karci, A. Fractional order entropy: New perspectives. Optik 2016, 127, 9172–9177. [Google Scholar] [CrossRef]
- Bagci, G.B. The third law of thermodynamics and the fractional entropies. Phys. Lett. A 2016, 380, 2615–2618. [Google Scholar] [CrossRef]
- Xu, J.; Dang, C. A novel fractional moments-based maximum entropy method for high-dimensional reliability analysis. Appl. Math. Model. 2019, 75, 749–768. [Google Scholar] [CrossRef]
- Xu, M.; Shang, P.; Qi, Y.; Zhang, S. Multiscale fractional order generalized information of financial time series based on similarity distribution entropy. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 053108. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.A.T.; Lopes, A.M. Fractional Rényi entropy. Eur. Phys. J. Plus 2019, 134. [Google Scholar] [CrossRef]
- Ferreira, R.A.C.; Machado, J.T. An Entropy Formulation Based on the Generalized Liouville Fractional Derivative. Entropy 2019, 21, 638. [Google Scholar] [CrossRef] [Green Version]
- Matouk, A. Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance. Chaos Solitons Fractals 2020, 140, 110257. [Google Scholar] [CrossRef]
- Matouk, A.; Khan, I. Complex dynamics and control of a novel physical model using nonlocal fractional differential operator with singular kernel. J. Adv. Res. 2020, 24, 463–474. [Google Scholar] [CrossRef]
- Matouk, A.E. (Ed.) Advanced Applications of Fractional Differential Operators to Science and Technology; IGI Global: Hershey, PA, USA, 2020. [Google Scholar] [CrossRef]
- Valério, D.; Trujillo, J.J.; Rivero, M.; Machado, J.T.; Baleanu, D. Fractional Calculus: A Survey of Useful Formulas. Eur. Phys. J. Spec. Top. 2013, 222, 1827–1846. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, J.A.T. Fractal and Entropy Analysis of the Dow Jones Index Using Multidimensional Scaling. Entropy 2020, 22, 1138. https://doi.org/10.3390/e22101138
Machado JAT. Fractal and Entropy Analysis of the Dow Jones Index Using Multidimensional Scaling. Entropy. 2020; 22(10):1138. https://doi.org/10.3390/e22101138
Chicago/Turabian StyleMachado, José A. Tenreiro. 2020. "Fractal and Entropy Analysis of the Dow Jones Index Using Multidimensional Scaling" Entropy 22, no. 10: 1138. https://doi.org/10.3390/e22101138
APA StyleMachado, J. A. T. (2020). Fractal and Entropy Analysis of the Dow Jones Index Using Multidimensional Scaling. Entropy, 22(10), 1138. https://doi.org/10.3390/e22101138