Time Fractional Fisher–KPP and Fitzhugh–Nagumo Equations
Abstract
:1. Introduction
2. Examples
2.1. Birth and Death Balance
2.2. Fractional Fisher–KPP Equation
- (i)
- Constant per capita birth rate, , linear per capita death rate, ,
- (ii)
- No births, , linear per capita death rate, ,
- (iii)
- Linear per capita birth rate, , no deaths, ,
2.3. Fractional Fitzhugh–Nagumo Equation
3. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A. Mean Square Displacements
Appendix B. Fox H-Function and Meijer G-Function Solutions
References
- Okubo, A. Diffusion and ecological problems: Mathematical models. Biomathematics 1980, 10, 114. [Google Scholar]
- Britton, N.F. Reaction-Diffusion Equations and Their Applications to Biology; Academic Press: London, UK, 1986. [Google Scholar]
- Murray, J.D. Mathematical Biology. II Spatial Models and Biomedical Applications; Springer: New York, NY, USA, 2003. [Google Scholar]
- Chellaboina, V.; Bhat, S.P.; Haddad, W.M.; Bernstein, D.S. Modeling and analysis of mass-action kinetics. IEEE Control Syst. 2009, 29, 60–78. [Google Scholar]
- Fisher, R.A. The Wave of Advance of Advantageous Genes. Ann. Eugen. 1937, 7, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, A.; Petrovskii, I.; Piskunov, N. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. Bull. Mosc. Univ. Math. Mech. 1937, 1, 1–25. [Google Scholar]
- Einstein, A. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann. Der Phys. 1905, 17, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Hilfer, R.; Anton, L. Fractional master equations and fractal time random walks. Phys. Rev. E 1995, 51, R848. [Google Scholar] [CrossRef] [Green Version]
- Compte, A. Stochastic foundations of fractional dynamics. Phys. Rev. E 1996, 53, 4191–4193. [Google Scholar] [CrossRef]
- Montroll, E.; Weiss, G. Random walks on lattices II. J. Math. Phys. 1965, 6, 167. [Google Scholar] [CrossRef]
- Li, C.; Qiang, D.; Chen, Y.Q. On Riemann-Liouville and Caputo Derivatives. Discret. Dyn. Nat. Soc. 2011, 2011, 562494. [Google Scholar] [CrossRef] [Green Version]
- Henry, B.I.; Wearne, S.L. Fractional reaction-diffusion. Phys. A 2000, 276, 448–455. [Google Scholar] [CrossRef]
- Henry, B.I.; Langlands, T.A.M.; Wearne, S.L. Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 2006, 74, 031116. [Google Scholar] [CrossRef] [Green Version]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Wright functions as scale-invariant solutions of the diffusion wave equation. J. Comput. Appl. Math. 2000, 118, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, I.M.; Schmidt, M.G.W.; Sagués, F. Reaction-subdiffusion equations. Phys. Rev. E 2006, 73, 031102. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Fedotov, S.; Méndez, V.; Horsthemke, W. Progagating fronts in reaction-transport systems with memory. Phys. Letts. A 2007, 371, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Langlands, T.A.M.; Henry, B.I.; Wearne, S.L. Anomalous subdiffusion with multispecies linear reaction dynamics. Phys. Rev. E 2008, 77, 021111. [Google Scholar] [CrossRef] [Green Version]
- Campos, D.; Fedotov, S.; Mendez, V. Anomalous reaction-transport processes: The dynamics beyond the law of mass action. Phys. Rev. E 2008, 77, 061130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froemberg, D.; Schmidt-Martens, H.; Sokolov, I.M.; Sagués, F. Front propagation in A + B → 2A reaction under subdiffusion. Phys. Rev. E 2008, 78, 011128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedotov, S. Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts. Phys. Rev. E 2010, 81, 011117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abad, E.; Yuste, S.B.; Lindenberg, K. Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks. Phys. Rev. E 2010, 81, 031115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuste, S.B.; Abad, E.; Lindenberg, K. Reaction-subdiffusion model of morphogen gradient formation. Phys. Rev. E 2010, 82, 061123. [Google Scholar] [CrossRef] [Green Version]
- Angstmann, C.N.; Donnelly, I.C.; Henry, B.I. Continuous time random walks with reactions forcing and trapping. Math. Model. Nat. Phenom. 2013, 8, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Nepomnyashchy, A.A. Mathematical modelling of sub-diffusion reaction systems. Math. Model. Nat. Phenom. 2016, 11, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Abad, E.; Angstmann, C.N.; Henry, B.I.; McGann, A.V.; Vot, F.L.; Yuste, S.B. Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains. Phys. Rev. E 2020, 102, 032111. [Google Scholar] [CrossRef]
- Rida, S.Z.; El-Sayed, A.M.A.; Arafa, A.A.M. On the solutions of time-fractional reaction-diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3847–3854. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X. A class of efficient difference method for time fractional reaction-dffusion equation. Comput. Appl. Math. 2018, 37, 4376–4396. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z. The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis. Appl. Numer. Math. 2019, 140, 1–22. [Google Scholar] [CrossRef]
- Prakash, A.; Kaur, H. A reliable numerical algorithm for a fractional model of Fitzhugh-Nagumo equation arising in the transmission of nerve impulses. Nonlinear Eng. 2019, 8, 719–727. [Google Scholar] [CrossRef]
- Kanth, A.S.V.R.; Garg, N. A numerical approach for a class of time-fractional reaction-diffusion equation through exponential B-spline method. Comput. Appl. Math. 2020, 39, 1–24. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Letts. 2008, 35, L17403. [Google Scholar] [CrossRef]
- Sabzikar, F.; Meerschaert, M.M.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathai, A.M.; Haubold, H.J. Mittag-Leffler Functions and Fractional Calculus. In Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008; pp. 79–134. [Google Scholar]
- Gorenflo, R.; Loutchko, J.; Luchko, Y. Computation of the Mittag-Leffler function Eα,β(z) and its derivative. Fract. Calc. Appl. Anal. 2002, 5, 1–26. [Google Scholar]
- Fox, C. The G and H functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 1961, 98, 395–429. [Google Scholar]
- Meijer, C.S. On the G-function. Mathematics 1946, 26, 227–237. [Google Scholar]
- Angstmann, C.N.; Donnelly, I.C.; Henry, B.I.; Jacobs, B.A.; Langlands, T.A.M.; Nichols, J.A. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations. J. Comput. Phys. 2016, 307, 508–534. [Google Scholar] [CrossRef] [Green Version]
- ben-Avraham, D.; Burschka, M.A.; Doering, C.R. Statics and dynamics of a diffusion-limited reaction: Anomalous kinetics, non-equilibrium self-ordering, and a dynamic transition. J. Stat. Phys. 1990, 60, 695–728. [Google Scholar] [CrossRef]
- Jones, C.K.R.T. Stability of the travelling wave solution of the Fitzhugh-Nagumo system. Trans. Am. Math. Soc. 1984, 286, 431–469. [Google Scholar] [CrossRef]
- Zheng, Q.; Shen, J. Pattern formation in the FitzHugh-Nagumo model. Comput. Math. Appl. 2015, 70, 1082–1097. [Google Scholar] [CrossRef]
- Fitzhugh, R. Impulse and physiological states in theoretical models of nerve membrane. Biophys. J. 1961, 1, 445–466. [Google Scholar] [CrossRef] [Green Version]
- Nagumo, J.S.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line stimulating nerve axon. Proc. IRE 1962, 50, 2061–2070. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angstmann, C.N.; Henry, B.I. Time Fractional Fisher–KPP and Fitzhugh–Nagumo Equations. Entropy 2020, 22, 1035. https://doi.org/10.3390/e22091035
Angstmann CN, Henry BI. Time Fractional Fisher–KPP and Fitzhugh–Nagumo Equations. Entropy. 2020; 22(9):1035. https://doi.org/10.3390/e22091035
Chicago/Turabian StyleAngstmann, Christopher N., and Bruce I. Henry. 2020. "Time Fractional Fisher–KPP and Fitzhugh–Nagumo Equations" Entropy 22, no. 9: 1035. https://doi.org/10.3390/e22091035
APA StyleAngstmann, C. N., & Henry, B. I. (2020). Time Fractional Fisher–KPP and Fitzhugh–Nagumo Equations. Entropy, 22(9), 1035. https://doi.org/10.3390/e22091035