Energy Efficiency Optimization in Massive MIMO Secure Multicast Transmission
Abstract
:1. Introduction
- We first considered a secure multicast transmission scenario, in which the BS can only obtain the statistical CSI of the legitimate UTs and eavesdropper, and formulate our energy efficiency maximization problem. A tight lower bound rate of secure multicast is presented to simplify the optimization objective. Therefore, our problem is transformed into finding the optimal solution of this equivalent problem.
- Via making the transmit signaling directions into a closed-form, we simplify the energy efficiency optimization of matrix-valued strategy design to a beam domain power allocation problem, reducing the optimization variables significantly.
- By invoking the Minorize–Maximize (MM) method and Dinkelbach’s transform, we propose a two-level iterative algorithm to solve the equivalent problem. In the outer iteration, we decompose the original problem into several fractional programming subproblems, where the numerator is concave and the denominator is linear. In the inner iteration, we introduce related variables to remove the denominator and transform each subproblem into a common convex optimization problem to obtain the optimal solution of the equivalent problem. Our simulation results reveal that this solution is almost equal to the original problem.
- According to the large-dimensional random matrix theory, we use the deterministic equivalent of the secure transmit rate instead of massive sample averaging to reduce the computational complexity, which is proved to be almost the same as the original result.
- denotes dimensional complex-valued vector space and denotes dimensional real-valued vector space.
- denotes the th element of matrix .
- det denotes the matrix determinant operation, tr denotes the matrix trace operation, and diag denotes the diagonalization of the matrix, respectively.
- denotes the expectation operation and denotes max.
- , , and denote the matrix transpose, conjugate, conjugate-transpose and inverse, respectively.
- ⊙ denotes the Hadamard product.
- denotes that is a positive semidefinite matrix.
2. Channel Model
3. Energy Efficiency Optimization of Secure Multicast Transmission
3.1. Minorize–Maximize Method
3.2. Dinkelbach’s Transform
3.3. Deterministic Equivalent
3.4. Discussion
Algorithm 1 Energy Efficiency Optimization Algorithm for Secure Multicast Transmission |
Input: The beam domain channel transmit statistics CSI and , initial power allocation , the threshold |
Output: Optimal power allocation matrix |
1: Initialization: |
2: Calculate using (26), (27), and (33) |
3: repeat |
4: Update |
5: Initialization: , , using (31) |
6: repeat |
7: Update |
8: Calculate by using (30) with |
9: Update using (31) |
10: until |
11: Return |
12: until |
13: Return |
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Proof of Theorem 1
References
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for Next Generation Wireless Systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Guariglia, E. Harmonic Sierpinski Gasket and Applications. Entropy 2018, 20, 714. [Google Scholar] [CrossRef] [Green Version]
- Marzetta, T.L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Lecompte, D.; Gabin, F. Evolved multimedia broadcast/multicast service (eMBMS) in LTE-advanced: Overview and Rel-11 enhancements. IEEE Commun. Mag. 2012, 50, 68–74. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Wu, Q.Q.; Xu, S.G.; Li, G.Y. Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks. IEEE Commun. Surv. Tutor. 2017, 19, 33–56. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, A.; Zhang, Q.; You, L.; Gao, X.Q.; Zheng, G. Robust multigroup multicast transmission for frame-based multi-beam satellite systems. IEEE Access 2018, 6, 46074–46083. [Google Scholar] [CrossRef]
- Li, Y.; Liu, A.; Wang, W.; Gao, X.Q. Outage constrained robust multigroup multicast beamforming for multi-beam satellite communication systems. IEEE Wirel. Commun. Lett. 2018, 6, 46074–46083. [Google Scholar]
- Jiang, C.; Wu, W.; Ding, Z. LTE Multimedia Broadcast Multicast Service Provisioning Based on Robust Header Compression. IEEE Trans. Wirel. Commun. 2018, 17, 1161–1172. [Google Scholar] [CrossRef]
- Xiang, Z.; Tao, M.; Wang, X. Massive MIMO multicasting in noncooperative cellular networks. IEEE J. Sel. Areas Commun. 2014, 32, 1180–1193. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Björnson, E.; Larsson, E.G.; Yuen, C.; Marzetta, T.L. Max-min fair transmit precoding for multi-group multicasting in massive MIMO. IEEE Trans. Wirel. Commun. 2018, 17, 1358–1373. [Google Scholar] [CrossRef]
- Sadeghi, M.; Björnson, E.; Larsson, E.G.; Yuen, C.; Marzetta, T.L. Joint unicast and multi-group multicast transmission in massive MIMO systems. IEEE Trans. Wirel. Commun. 2018, 17, 6375–6388. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Sun, S.; Qi, F.; Bo, R.; Qian, Y. Massive MIMO Based Hybrid Unicast/Multicast Services for 5G. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016. [Google Scholar]
- Mukherjee, A.; Fakoorian, S.A.A.; Huang, J.; Swindlehurst, A.L. Principles of physical layer security in multiuser wireless networks: A survey. IEEE Commun. Surv. Tutor. 2014, 16, 1550–1573. [Google Scholar] [CrossRef] [Green Version]
- Kapetanović, D.; Zheng, G.; Rusek, F. Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks. IEEE Commun. Mag. 2015, 53, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Deepanramkumar, P.; Karuppiah, M.; Islam, S.K.H.; Obaidat, M.S. Secure cognitive radio-based synchronized transmission of 5G signals using massive MIMO. Int. J. Commun. Syst. 2018, 31, e3805.1–e3805.15. [Google Scholar]
- Wang, J.; Wang, J.; Lu, K.; Qian, Y.; Gu, N. On the Optimal Linear Network Coding Design for Information Theoretically Secure Unicast Streaming. IEEE Trans. Multimedia 2016, 18, 1149–1162. [Google Scholar] [CrossRef]
- Wu, Y.; Schober, R.; Ng, D.W.K.; Xiao, C.; Caire, G. Secure massive MIMO transmission with an active eavesdropper. IEEE Trans. Inf. Theory 2016, 62, 3880–3900. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Gao, X.Q.; Wu, Y.; Xiao, C. Beam domain secure transmission for massive MIMO communications. IEEE Trans. Veh. Technol. 2018, 67, 7113–7127. [Google Scholar] [CrossRef] [Green Version]
- Lv, T.; Gao, H.; Yang, S. Secrecy transmit beamforming for heterogeneous networks. IEEE J. Sel. Areas Commun. 2015, 33, 1154–1170. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Wang, J.; Wang, W.; Gao, X. Secure Multicast Transmission for Massive MIMO With Statistical Channel State Information. IEEE Signal Process. Lett. 2019, 26, 803–807. [Google Scholar] [CrossRef]
- Liu, X.; Gao, F.; Wang, G.; Wang, X. Joint beamforming and user selection in multicast downlink channel under secrecy-outage constraint. IEEE Commun. Lett. 2014, 18, 82–85. [Google Scholar] [CrossRef]
- Hanif, M.F.; Tran, L.N.; Juntti, M.; Glisic, S. On linear precoding strategies for secrecy rate maximization in multiuser multiantenna wireless networks. IEEE Trans. Signal Process. 2014, 62, 3536–3551. [Google Scholar] [CrossRef]
- Wang, B.; Mu, P. Artificial noise-aided secure multicasting design under secrecy outage constraint. IEEE Trans. Commun. 2017, 65, 5401–5414. [Google Scholar] [CrossRef]
- Hu, J.; Cai, Y.; Yang, N.; Zhou, X.; Yang, W. Artificial-Noise-Aided Secure Transmission Scheme With Limited Training and Feedback Overhead. IEEE Trans. Wirel. Commun. 2017, 16, 193–205. [Google Scholar] [CrossRef]
- Zappone, A.; Jorswieck, E. Energy efficiency in wireless networks via fractional programming theory. Found. Trends Commun. Inf. Theory 2015, 11, 185–296. [Google Scholar] [CrossRef]
- You, L.; Wang, W.; Gao, X. Energy-Efficient Multicast Precoding for Massive MIMO Transmission with Statistical CSI. Energies 2018, 11, 3175. [Google Scholar] [CrossRef] [Green Version]
- Auer, G.; Giannini, V.; Desset, C.; Godor, I.; Skillermark, P.; Olsson, M.; Imran, M.A.; Sabell, D.; Gonzalez, M.J.; Blume, O.; et al. How much energy is needed to run a wireless network? IEEE Wirel. Commun. 2012, 18, 40–49. [Google Scholar] [CrossRef]
- Ru, G.; Li, H.; Liu, L.; Hu, Z.; Gan, Y. Energy Efficiency of Hybrid Cellular With Heterogeneous QoS Provisions. IEEE Commun. Lett. 2014, 18, 1003–1006. [Google Scholar] [CrossRef]
- Ng, D.W.K.; Lo, E.S.; Schober, R. Energy-Efficient Resource Allocation in OFDMA Systems with Large Numbers of Base Station Antennas. IEEE Trans. Wirel. Commun. 2012, 11, 3292–3304. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Hoydis, J.; Debbah, M. Optimal Design of Energy-Efficient Multi-User MIMO Systems: Is Massive MIMO the Answer? IEEE Trans. Wirel. Commun. 2015, 14, 3059–3075. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Huang, Y.; Jin, S.; Yang, L. Energy Efficient Coordinated Beamforming Design in Multi-Cell Multicast Networks. IEEE Commun. Lett. 2015, 19, 985–988. [Google Scholar] [CrossRef]
- Tervo, O.; Tran, L.; Pennanen, H.; Chatzinotas, S.; Ottersten, B.; Juntti, M. Energy-Efficient Multicell Multigroup Multicasting With Joint Beamforming and Antenna Selection. IEEE Trans. Signal Process. 2018, 66, 4904–4919. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lee, J.; Wang, F.; Quek, T.Q.S. Jamming-aided secure communication in massive MIMO Rician channels. IEEE Trans. Wirel. Commun. 2015, 14, 6854–6868. [Google Scholar] [CrossRef]
- Sun, C.; Gao, X.Q.; Jin, S.; Matthaiou, M.; Ding, Z.; Xiao, C. Beam division multiple access transmission for massive MIMO communications. IEEE Trans. Commun. 2015, 63, 2170–2184. [Google Scholar] [CrossRef]
- You, L.; Gao, X.Q.; Xia, X.G.; Ma, N.; Peng, Y. Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading channels. IEEE Trans. Wirel. Commun. 2015, 14, 3352–3366. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Gao, X.Q.; Swindlehurst, A.L.; Zhong, W. Channel acquisition for massive MIMO-OFDM with adjustable phase shift pilots. IEEE Trans. Signal Process. 2016, 64, 1461–1476. [Google Scholar] [CrossRef]
- Gao, X.Q.; Jiang, B.; Li, X.; Gershman, A.B.; McKay, M.R. Statistical eigenmode transmission over jointly correlated MIMO channels. IEEE Trans. Inf. Theory 2009, 55, 3735–3750. [Google Scholar] [CrossRef]
- You, L.; Gao, X.Q.; Li, G.Y.; Xia, X.G.; Ma, N. BDMA for millimeter-wave/Terahertz massive MIMO transmission with per-beam synchronization. IEEE J. Sel. Areas Commun. 2017, 35, 1550–1563. [Google Scholar] [CrossRef] [Green Version]
- Pei, M.; Swindlehurst, A.L.; Ma, D.; Wei, J. Adaptive limited feedback for MISO wiretap channels with cooperative jamming. IEEE Trans. Signal Process. 2014, 62, 993–1004. [Google Scholar] [CrossRef]
- Chouzenoux, E.; Moussaoui, S.; Idier, J. Majorize-minimize linesearch for inversion methods involving barrier function optimization. Inverse Probl. 2012, 28, 065011. [Google Scholar] [CrossRef]
- Sun, Y.; Babu, P.; Palomar, D.P. Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning. IEEE Trans. Signal Process. 2016, 65, 794–816. [Google Scholar] [CrossRef]
- Sriperumbudur, B.K.; Lanckriet, G.R.G. A proof of convergence of the concave-convex procedure using Zangwill’s theory. Neural Comput. 2012, 24, 1391–1407. [Google Scholar] [CrossRef] [PubMed]
- Dinkelbach, W. On Nonlinear Fractional Programming. Manag. Sci. 1967, 13, 492–498. [Google Scholar] [CrossRef]
- Zappone, A.; Bjornson, E.; Sanguinetti, L.; Jorswieck, E. Globally Optimal Energy-Efficient Power Control and Receiver Design in Wireless Networks. Trans. Sig. Proc. 2017, 65, 2844–2859. [Google Scholar] [CrossRef] [Green Version]
- Couillet, R.; Debbah, M. Random Matrix Methods for Wireless Communications; Cambridge Univ. Press: New York, NY, USA, 2011. [Google Scholar]
- Lu, A.A.; Gao, X.Q.; Xiao, C. Free deterministic equivalents for the analysis of MIMO multiple access channel. IEEE Trans. Inf. Theory 2016, 62, 4604–4629. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.K.; Jin, S.; Wong, K.K. On the Sum-Rate of Multiuser MIMO Uplink Channels with Jointly-Correlated Rician Fading. IEEE Trans. Commun. 2011, 59, 2883–2895. [Google Scholar] [CrossRef]
- Salo, J.; Del Galdo, G.; Salmi, J.; Kyösti, P.; Milojevic, M.; Laselva, D.; Schneider, C. MATLAB Implementation of the 3GPP Spatial Channel Model (3GPP TR 25.996). January 2005. Available online: http://www.mweda.com/img/smqh/tongxin/tongxin-3300qsdyezswos.pdf (accessed on 10 October 2020).
- Lapidoth, A. The capacity of a MIMO Ricean channel is monotonic in the singular values of the mean. In Proceedings of the 5th International ITG Conference on Source and Channel Coding (SCC), Erlangen, Germany, 14–16 January 2004; pp. 1–5. [Google Scholar]
Parameter | Value |
---|---|
Channel model | 3GPP SCM |
Array topology | ULA with half wavelength antenna spacing |
Propagation scenario | Suburban macro-cell |
The numbers of BS antennas | M = 64 |
The numbers of UTs | K = 8 |
The numbers of UTs antennas | = 4 () |
The numbers of eavesdropper antennas | = 4 |
Bandwidth | W = 10 MHz |
Amplifier inefficiency factor | = 5 |
Static power consumption | = 40 dBm |
Hardware dissipated power per antenna | = 30 dBm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Qu, L.; Huang, Y.; Zheng, Y.; You, L.; Wang, W. Energy Efficiency Optimization in Massive MIMO Secure Multicast Transmission. Entropy 2020, 22, 1145. https://doi.org/10.3390/e22101145
Jiang B, Qu L, Huang Y, Zheng Y, You L, Wang W. Energy Efficiency Optimization in Massive MIMO Secure Multicast Transmission. Entropy. 2020; 22(10):1145. https://doi.org/10.3390/e22101145
Chicago/Turabian StyleJiang, Bin, Linbo Qu, Yufei Huang, Yifei Zheng, Li You, and Wenjin Wang. 2020. "Energy Efficiency Optimization in Massive MIMO Secure Multicast Transmission" Entropy 22, no. 10: 1145. https://doi.org/10.3390/e22101145
APA StyleJiang, B., Qu, L., Huang, Y., Zheng, Y., You, L., & Wang, W. (2020). Energy Efficiency Optimization in Massive MIMO Secure Multicast Transmission. Entropy, 22(10), 1145. https://doi.org/10.3390/e22101145