Electromagnetically Induced Transparency in Media with Rydberg Excitons 2: Cross-Kerr Modulation
Abstract
:1. Introduction
2. Theory
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fleischhauer, M.; Immamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633. [Google Scholar] [CrossRef] [Green Version]
- Distante, E.; Padrón-Brito, A.; Cristiani, M.; Paredes-Barato, D.; de Riedmatten, H. Storage Enhanced Nonlinearities in a Cold Atomic Rydberg Ensemble. Phys. Rev. Lett. 2016, 117, 113001. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Imamoglu, M. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 1996, 21, 1936. [Google Scholar] [CrossRef] [PubMed]
- Shiau, B.; Wu, M.; Lin, C.; Chen, Y. Low-Light-Level Cross-Phase Modulation with Double Slow Light Pulses. Phys. Rev. Lett. 2011, 106, 193006. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Huang, G. Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg-Rydberg interaction. Opt. Express 2016, 24, 4442. [Google Scholar] [CrossRef] [PubMed]
- Vitali, D.; Fortunato, M.; Tombesi, P. Complete Quantum Teleportation with a Kerr Nonlinearity. Phys. Rev. Lett. 2000, 85, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munro, W.; Nemoto, K.; Spiller, T. Weak nonlinearities: A new route to optical quantum computation. New J. Phys. 2005, 7, 137. [Google Scholar] [CrossRef]
- Hosseini, M.; Rebić, S.; Sparkes, B.; Twamley, J.; Buchler, B.; Lam, K.P. Memory-enhanced noiseless cross-phase modulation. Light Sci. Appl. 2012, 1, e40. [Google Scholar] [CrossRef] [Green Version]
- Volz, J.; Scheucher, M.; Junge, C.; Rauschenbeutel, A. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nat. Photonics 2014, 8, 965. [Google Scholar] [CrossRef]
- Tiarks, D.; Schmidt, S.; Rempe, G.; Dürr, S. Optical π phase shift created with a single-photon pulse. Sci. Adv. 2016, 2, e1600036. [Google Scholar] [CrossRef] [Green Version]
- Firstenberg, O.; Adams, C.; Hofferberth, S. Nonlinear quantum optics mediated by Rydberg interactions. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 152003. [Google Scholar] [CrossRef]
- Johnsson, M.; Molmer, K. Storing quantum information in a solid using dark-state polaritons. Phys. Rev. A 2004, 70, 032320. [Google Scholar] [CrossRef] [Green Version]
- Heinze, G.; Hubrich, C.; Halfmann, T. Stopped Light and Image Storage by Electromagnetically Induced Transparency up to the Regime of One Minute. Phys. Rev. Lett. 2013, 111, 033601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schraft, D.; Hain, M.; Lorenz, N.; Halfmann, T. Stopped Light at High Storage Efficiency in a Pr3+:Y2SiO5 Crystal. Phys. Rev. Lett. 2016, 116, 073602. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, G.; Burkard, G.; Klimov, P.; Awschalom, D. A quantum memory intrinsic to single nitrogen vacancy centres in diamond. Nat. Phys. 2011, 7, 789. [Google Scholar] [CrossRef]
- Ian, H.; Liu, Y.; Nori, F. Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits. Phys. Rev. A 2010, 81, 063823. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Liu, Y.; Ian, H.; You, J.; Il’ichev, E.; Nori, F. Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits. Phys. Rev. A 2014, 89, 063822. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Gu, X.; Liu, Y.; Miranowicz, A.; Nori, F. Optomechanical analog of two-color electromagnetically-induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 2014, 90, 023817. [Google Scholar] [CrossRef] [Green Version]
- Jing, H.; Özdemir, S.; Geng, Z.; Zhang, J.; Lü, X.; Peng, B.; Yang, L.; Nori, F. Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 2015, 5, 9663. [Google Scholar] [CrossRef]
- Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M.; Glazov, M. Scaling laws of Rydberg excitons. Phys. Rev. B 2017, 96, 125142. [Google Scholar] [CrossRef] [Green Version]
- Kazimierczuk, T.; Fröhlich, D.; Scheel, S.; Stolz, H.; Bayer, M. Giant Rydberg excitons in the copper oxide Cu2O. Nature 2014, 514, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grünwald, P.; Aßmann, M.; Heckötter, J.; Fröhlich, D.; Bayer, M.; Stolz, H.; Scheel, S. Signatures of Quantum Coherences in Rydberg Excitons. Phys. Rev. Lett. 2016, 117, 133003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khazali, M.; Heshami, K.; Simon, C. Single-photon source based on Rydberg exciton blockade. J. Phys. B 2017, 50, 215301. [Google Scholar] [CrossRef] [Green Version]
- Walther, V.; Johne, R.; Pohl, T. Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities. Nat. Commun. 2018, 9, 1309. [Google Scholar] [CrossRef]
- Walther, V.; Kruger, S.; Scheel, S.; Pohl, T. Interactions between Rydberg excitons in Cu2O. Phys. Rev. B 2018, 98, 1165201. [Google Scholar] [CrossRef] [Green Version]
- Ziemkiewicz, D.; Zielińska-Raczyńska, S. Proposal of tunable Rydberg exciton maser. Opt. Lett. 2018, 43, 3742–3745. [Google Scholar] [CrossRef]
- Ziemkiewicz, D.; Zielińska-Raczyńska, S. Solid-state pulsed microwave emitter based on Rydberg excitons. Opt. Express 2019, 27, 16983. [Google Scholar] [CrossRef]
- Ziemkiewicz, D. Electromagnetically Induced Transparency in media with Rydberg Excitons 1: Slow light. Entropy 2019, 22, 177. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, P.; Dowling, J.; Sanders, B. Objectively Discerning Autler-Townes Splitting from Electromagnetically Induced Transparency. Phys. Rev. Lett. 2011, 107, 163604. [Google Scholar] [CrossRef]
- Peng, B.; Özdemir, S.; Chen, W.; Nori, F.; Yang, L. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 2014, 5, 5082. [Google Scholar] [CrossRef]
- Liu, Q.C.; Li, T.; Luo, X.; Zhao, H.; Xiong, W.; Zhang, Y.; Chen, Z.; Liu, J.; Chen, W.; Nori, F.; Tsai, J.; You, J. Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system. Phys. Rev. A 2016, 93, 053838. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, A.; Saglamyurek, E.; Hrushevskyi, T.; Hubele, S.; LeBlanc, L. Discerning quantum memories based on electromagnetically-induced-transparency and Autler-Townes-splitting protocols. Phys Rev. A 2019, 100, 012314. [Google Scholar] [CrossRef] [Green Version]
- Zielińska-Raczyńska, S.; Ziemkiewicz, D.; Czajkowski, G. Magneto-optical properties of Rydberg excitons: Center-of-mass quantization approach. Phys. Rev. B 2017, 95, 075204. [Google Scholar] [CrossRef] [Green Version]
- Rebić, S.; Vitali, D.; Ottaviani, C.; Tombesi, P.; Artoni, M.; Cataliotti, F.; Corbalán, R. Polarization phase gate with a tripod atomic system. Phys. Rev. A 2004, 70, 032317. [Google Scholar] [CrossRef] [Green Version]
- Slowik, K.; Raczyński, A.; Zaremba, J.; Zielińska-Kaniasty, S.; Artoni, M.; La Rocca, G. Cross-phase modulation and population redistribution in a periodic tripod medium. J. Mod. Opt. 2011, 58, 978–987. [Google Scholar] [CrossRef] [Green Version]
- Scully, M.; Zubairy, M. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Artoni, M.; La Rocca, G.; Bassani, F. Electromagnetic-induced transparency of Wannier-Mott excitons. Europhys. Lett. 2000, 49, 445. [Google Scholar] [CrossRef]
- Zielińska-Raczyńska, S.; Ziemkiewicz, D.; Czajkowski, G. Electro-optical properties of Rydberg excitons. Phys. Rev. B 2016, 94, 045205. [Google Scholar] [CrossRef] [Green Version]
- Feizpour, A.; Dmochowski, G.; Steinberg, A. Short-pulse cross-phase modulation in an electromagnetically-induced-transparency medium. Phys. Rev. A 2016, 93, 013834. [Google Scholar] [CrossRef] [Green Version]
- Malerba, C.; Biccari, F.; Ricardo, C.; D’Incau, M.; Scardi, P.; Mittiga, A. Absorption coefficient of bulk and thin film Cu2O. Sol. Energy Mater. Sol. Cells 2011, 95, 2848–2854. [Google Scholar] [CrossRef]
- Sinclair, J.; Daniela Angulo, D.; Lupu-Gladstein, N.; Bonsma-Fisher, K.; Steinberg, A.M. Observation of a large, resonant, cross-Kerr nonlinearity in a cold Rydberg gas. Phys. Rev. Res. 2019, 1, 033193. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemkiewicz, D.; Zielińska - Raczyńska, S. Electromagnetically Induced Transparency in Media with Rydberg Excitons 2: Cross-Kerr Modulation. Entropy 2020, 22, 160. https://doi.org/10.3390/e22020160
Ziemkiewicz D, Zielińska - Raczyńska S. Electromagnetically Induced Transparency in Media with Rydberg Excitons 2: Cross-Kerr Modulation. Entropy. 2020; 22(2):160. https://doi.org/10.3390/e22020160
Chicago/Turabian StyleZiemkiewicz, David, and Sylwia Zielińska - Raczyńska. 2020. "Electromagnetically Induced Transparency in Media with Rydberg Excitons 2: Cross-Kerr Modulation" Entropy 22, no. 2: 160. https://doi.org/10.3390/e22020160
APA StyleZiemkiewicz, D., & Zielińska - Raczyńska, S. (2020). Electromagnetically Induced Transparency in Media with Rydberg Excitons 2: Cross-Kerr Modulation. Entropy, 22(2), 160. https://doi.org/10.3390/e22020160