Condensed-Matter-Principia Based Information & Statistical Measures: From Classical to Quantum
A special issue of Entropy (ISSN 1099-4300).
Deadline for manuscript submissions: closed (20 December 2019) | Viewed by 38326
Special Issue Editors
Interests: statistical mechanics; soft condensed matter; (bio)materials nanophysics
Special Issues, Collections and Topics in MDPI journals
Interests: quantum optics; quantum information; photonics
Special Issue Information
Dear Colleagues,
Information, a relevant concern of this Special Issue, can be qualitatively defined as a noise-affected portion of an expected physical quantity transmitted from a sender to its receiving counterpart through a sender–receiver interface, also named an intermedium.
There is a substantiated knowledge accumulated about the routes of information transmission called, mostly, information channels. The intermedium can then be viewed as an ensemble of the channels: They can either be noisy or fairly noiseless.
The tercet, comprising the sender–receiver couple, and the intermedium, can be presented both classically and quantum-mechanically. A classic example is crystal growth from solution/melt, viewed as a sender, whereas the crystal surface zone mimics the receiver, and the entire crystal’s interface can be identified with the intermedium.
A quantum-mechanical example can be presented in terms of electrons transported along (carbon) nanotubes of different length and tortuosity, incorporated in a (bio)material’s sample, if operating out of Landauer’s ballistic-transport principia, thus experiencing tunneling conductivity conditions. Transport of quantum particles such as excitons is another valuable example.
The proposed Special Issue calls for papers dealing with physicochemical, condensed-matter systems, or their interdisciplinary analogs, for which really precise and well-defined classical vs. quantum information measures can be inferred, based preferably on the entropy concept.
It is envisaged that certain criteria such as those based on maximum entropy principle or entropy production for open thermodynamical systems will be applied using methods of statistical mechanics and quantum physics. Nonlinear (optoelectronic) complex systems’ peculiarities, different noise sources, and similar perturbative factors, such as distribution of defects and/or barriers to transport, as well as sources of chemical reactions spoiling a system’s directional behavior, are welcome to their incorporation in the Special Issue.
This Special Issue is devoted in part to recognizing the outstanding contribution to statistical thermodynamics and condensed matter physics by Professor Gerard Czajkowski, former institute director and vice rector for research at the UTP University of Science and Technology, Bydgoszcz, Poland.
The recognition is planned as Colloquium at UTP University of Science & Technology (Bydgoszcz, Poland), sponsored by the Marshal of Kujawsko-Pomorskie Voivodship in Toruń, Poland.
Prof. Adam Gadomski
Prof. Sylwia Zielińska-Raczyńska
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.