Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis
Abstract
:1. Introduction
2. Proposed Image Quality Measure
3. Results and Discussion
3.1. Experimental Data
3.2. Evaluation Methodology
3.3. Comparative Evaluation
3.4. Computational Complexity
3.5. Influence of Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hameed, M.H.; Umer, F.; Khan, F.R.; Pirani, S.; Yusuf, M. Assessment of the diagnostic quality of the digital display monitors at the dental clinics of a university hospital. Inform. Med. Unlocked 2018, 11, 83–86. [Google Scholar] [CrossRef]
- Bielecka, M. Syntactic-geometric-fuzzy hierarchical classifier of contours with application to analysis of bone contours in X-ray images. Appl. Soft Comput. 2018, 69, 368–380. [Google Scholar] [CrossRef]
- Bielecka, M.; Bielecki, A.; Korkosz, M.; Skomorowski, M.; Wojciechowski, W.; Zieliński, B. Application of Shape Description Methodology to Hand Radiographs Interpretation. In Computer Vision and Graphics; Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 11–18. [Google Scholar]
- Kustner, T.; Liebgott, A.; Mauch, L.; Martirosian, P.; Bamberg, F.; Nikolaou, K.; Yang, B.; Schick, F.; Gatidis, S. Automated reference-free detection of motion artifacts in magnetic resonance images. Magn. Reson. Mater. Phys. Biol. Med. 2018, 31, 243–256. [Google Scholar] [CrossRef]
- Senel, L.K.; Kilic, T.; Gungor, A.; Kopanoglu, E.; Guven, H.E.; Saritas, E.U.; Koc, A.; Cukur, T. Statistically Segregated k-Space Sampling for Accelerating Multiple-Acquisition MRI. IEEE Trans. Med Imaging 2019, 38, 1701–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoll, F.; Hammernik, K.; Kobler, E.; Pock, T.; Recht, M.P.; Sodickson, D.K. Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn. Reson. Med. 2019, 81, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.S.; Rajagopal, H.; Paramesran, R. Correlation between subjective and objective assessment of magnetic resonance (MR) images. Magn. Reson. Imaging 2016, 34, 820–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Hu, P.; Gu, Y.; Pang, L.; Zhang, Z.; Zhang, Y.; Meng, X.; Cao, T.; Liu, X.; Fan, Z.; et al. Impact of patient comfort on diagnostic image quality during PET/MR exam: A quantitative survey study for clinical workflow management. J. Appl. Clin. Med. Phys. 2019, 20, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Chandler, D.M. Seven Challenges in Image Quality Assessment: Past, Present, and Future Research. ISRN Signal Process. 2013, 2013, 905685. [Google Scholar] [CrossRef]
- Baselice, F.; Ferraioli, G.; Pascazio, V. A 3D MRI denoising algorithm based on Bayesian theory. Biomed. Eng. OnLine 2017, 16, 25. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Bang, K.; Jang, H.; Hwang, D.; Initiative, A.D.N. Quality evaluation of no-reference MR images using multidirectional filters and image statistics. Magn. Reson. Med. 2018, 80, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.S.; Rajagopal, H. Modified-BRISQUE as no reference image quality assessment for structural MR images. Magn. Reson. Imaging 2017, 43, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Welvaert, M.; Rosseel, Y. On the Definition of Signal-To-Noise Ratio and Contrast-To-Noise Ratio for fMRI Data. PLOS ONE 2013, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, O.; Raya, J.G.; Reeder, S.B.; Reiser, M.F.; Schoenberg, S.O. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J. Magn. Reson. Imaging 2007, 26, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Dai, G.; Wang, Z.; Li, L.; Wei, X.; Xie, Y. A consistency evaluation of signal-to-noise ratio in the quality assessment of human brain magnetic resonance images. BMC Med. Imaging 2018, 18, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, G.; Liang, X.; Yu, S.; Li, L.; Xie, Y. Can Signal-to-Noise Ratio Perform as a Baseline Indicator for Medical Image Quality Assessment. IEEE Access 2018, 6, 11534–11543. [Google Scholar] [CrossRef]
- Sandilya, M.; Nirmala, S.R. Determination of reconstruction parameters in Compressed Sensing MRI using BRISQUE score. In Proceedings of the 2018 International Conference on Information, Communication, Engineering and Technology (ICICET), Pune, India, 29–31 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Osadebey, M.; Pedersen, M.; Arnold, D.; Wendel-Mitoraj, K. No-reference quality measure in brain MRI images using binary operations, texture and set analysis. IET Image Process. 2017, 11, 672–684. [Google Scholar] [CrossRef] [Green Version]
- Neubeck, A.; Van Gool, L. Efficient Non-Maximum Suppression. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; pp. 850–855. [Google Scholar] [CrossRef]
- Hosang, J.; Benenson, R.; Schiele, B. Learning non-maximum suppression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4507–4515. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-García, J.; Romero-Oraá, R.; García, M.; López-Gálvez, M.I.; Hornero, R. Combination of Global Features for the Automatic Quality Assessment of Retinal Images. Entropy 2019, 21, 311. [Google Scholar] [CrossRef] [Green Version]
- Śmieja, M.; Tabor, J. Entropy of the Mixture of Sources and Entropy Dimension. IEEE Trans. Inf. Theory 2012, 58, 2719–2728. [Google Scholar] [CrossRef] [Green Version]
- Deshmane, A.; Gulani, V.; Griswold, M.A.; Seiberlich, N. Parallel MR imaging. J. Magn. Reson. Imaging 2012, 36, 55–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breuer, F.A.; Kellman, P.; Griswold, M.A.; Jakob, P.M. Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn. Reson. Med. 2005, 53, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, H.R.; Sabir, M.F.; Bovik, A.C. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Gu, K.; Zhai, G.; Liu, J.; Yang, X.; Chen, C.W. Blind Quality Assessment Based on Pseudo-Reference Image. IEEE Trans. Mult. 2018, 20, 2049–2062. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Bovik, A.C. A Feature-Enriched Completely Blind Image Quality Evaluator. IEEE Trans. Image Process. 2015, 24, 2579–2591. [Google Scholar] [CrossRef] [Green Version]
- Oszust, M. No-Reference quality assessment of noisy images with local features and visual saliency models. Inf. Sci. 2019, 482, 334–349. [Google Scholar] [CrossRef]
- Gu, K.; Zhai, G.; Yang, X.; Zhang, W. Hybrid No-Reference Quality Metric for Singly and Multiply Distorted Images. IEEE Trans. Broadcast. 2014, 60, 555–567. [Google Scholar] [CrossRef]
- Zhu, X.; Milanfar, P. Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content. IEEE Trans. Image Process. 2010, 19, 3116–3132. [Google Scholar] [CrossRef]
- Liu, L.; Liu, B.; Huang, H.; Bovik, A.C. No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 2014, 29, 856–863. [Google Scholar] [CrossRef]
- Leclaire, A.; Moisan, L. No-Reference Image Quality Assessment and Blind Deblurring with Sharpness Metrics Exploiting Fourier Phase Information. J. Math. Imaging Vis. 2015, 52, 145–172. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Liu, W.; Zhang, K.; Duanmu, Z.; Wang, Z.; Zuo, W. End-to-End Blind Image Quality Assessment Using Deep Neural Networks. IEEE Trans. Image Process. 2018, 27, 1202–1213. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Liu, W.; Liu, T.; Wang, Z.; Tao, D. dipIQ: Blind Image Quality Assessment by Learning-to-Rank Discriminable Image Pairs. IEEE Trans. Image Process. 2017, 26, 3951–3964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardenas-Blanco, A.; Tejos, C.; Irarrazaval, P.; Cameron, I. Noise in magnitude magnetic resonance images. Concepts Magn. Reson. Part A 2008, 32A, 409–416. [Google Scholar] [CrossRef]
- Jarque, C.M.; Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ. Lett. 1980, 6, 255–259. [Google Scholar] [CrossRef]
Body Part | No. of Image Pairs | Axial Plane | Sagittal Plane | Coronal Plane |
---|---|---|---|---|
Lumbar and cervical spine | 7 | 2 | 5 | 0 |
Knee | 7 | 2 | 4 | 1 |
Shoulder | 8 | 2 | 2 | 4 |
Wrist | 3 | 0 | 0 | 3 |
Hip | 2 | 1 | 1 | 0 |
Pelvis | 2 | 0 | 0 | 2 |
Elbow | 1 | 1 | 0 | 0 |
Ankle | 1 | 0 | 1 | 0 |
Brain | 4 | 1 | 2 | 1 |
Total pairs | 35 | 9 | 15 | 11 |
Method | PLCC | SRCC | KRCC | RMSE | Approach to Image Quality Modeling and Prediction |
---|---|---|---|---|---|
ENMIQA | 0.6741 | 0.3540 | 0.2428 | 0.5375 | Thresholded NMS and entropy |
BPRI | 0.3440 | 0.1515 | 0.1120 | 0.6832 | Distortion-specific metrics and pseudo-reference image |
DEEPIQ | 0.4039 | 0.3030 | 0.2037 | 0.6657 | RankNet trained on quality-discriminable image pairs |
ILNIQE | 0.3465 | 0.1796 | 0.1162 | 0.6826 | Multivariate Gaussian model of pristine images |
MEON | 0.0439 | 0.1247 | 0.0771 | 0.7272 | End-to-end deep neural network with subtasks |
MetricQ | 0.3075 | 0.2300 | 0.1520 | 0.6924 | Singular value decomposition of local image gradient matrix |
QENI | 0.2886 | 0.2385 | 0.1587 | 0.6967 | Self-similarity of local features and saliency models |
SINDEX | 0.3307 | 0.2802 | 0.1962 | 0.6869 | Global and local phase information |
SNRTOI | 0.2262 | 0.1828 | 0.1245 | 0.7088 | Signal-to-nose ratio |
SSEQ | 0.2903 | 0.0855 | 0.0487 | 0.6963 | Distortion classification using local entropy |
SISBLIM | 0.5733 | 0.2885 | 0.1820 | 0.5962 | Free energy theory based fusion of distortion-specific metrics |
Method | Ratio | JB Statistic |
---|---|---|
ENMIQA | 1.0000 | 0.8523 |
BPRI | 0.6189 | 2.8999 |
DEEPIQ | 0.6510 | 1.3870 |
ILNIQE | 0.6201 | 3.9911 |
MEON | 0.5462 | 3.8930 |
MetricQ | 0.6032 | 2.8356 |
QENI | 0.5952 | 2.7040 |
SINDEX | 0.6124 | 3.2580 |
SNRTOI | 0.5751 | 1.7389 |
SSEQ | 0.5958 | 3.5343 |
SISBLIM | 0.8128 | 0.1254 |
Method | ENMIQA | BPRI | DEEPIQ | ILNIQE | MEON | MetricQ | QENI | SINDEX | SNRTOI | SSEQ | SISBLIM |
---|---|---|---|---|---|---|---|---|---|---|---|
Runtime | 0.2151 | 0.2524 | 2.439 | 9.299 | 0.1853 | 0.4813 | 1.212 | 0.0479 | 0.0069 | 0.9140 | 1.629 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obuchowicz, R.; Oszust, M.; Bielecka, M.; Bielecki, A.; Piórkowski, A. Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis. Entropy 2020, 22, 220. https://doi.org/10.3390/e22020220
Obuchowicz R, Oszust M, Bielecka M, Bielecki A, Piórkowski A. Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis. Entropy. 2020; 22(2):220. https://doi.org/10.3390/e22020220
Chicago/Turabian StyleObuchowicz, Rafał, Mariusz Oszust, Marzena Bielecka, Andrzej Bielecki, and Adam Piórkowski. 2020. "Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis" Entropy 22, no. 2: 220. https://doi.org/10.3390/e22020220
APA StyleObuchowicz, R., Oszust, M., Bielecka, M., Bielecki, A., & Piórkowski, A. (2020). Magnetic Resonance Image Quality Assessment by Using Non-Maximum Suppression and Entropy Analysis. Entropy, 22(2), 220. https://doi.org/10.3390/e22020220