Implementation of the Onsager Theorem to Evaluate the Speed of the Deflagration Wave
Abstract
:1. Background
2. Theory
3. Present Suggested Approach
4. Discussion
5. In Summary
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Heat capacity at constant pressure | ||
Enthalpy | ||
Flux | ||
Thermal conductivity | ||
Specific heat ratio | ||
The Onsager phenomenological coefficients | ||
Mass flow rate per unit area | ||
Heat production per unit area | ||
Pressure | ||
Gas constant | ||
Laminar burning velocity | ||
Entropy per unit volume | ||
Temperature | ||
Time | ||
Velocity | ||
Driving Force | ||
Coordinate | ||
Greek symbols | ||
Thermal diffusivity | ||
Flame thickness | ||
An arbitrary number smaller but close to 1 | ||
Density | ||
Indices | ||
Combustion | ||
Products | ||
Reactants | ||
Thermal |
References
- Glassman, I.; Yetter, R.A. Combustion, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Semenov, N.N. Some Problems in Chemical Kinetics and Reactivity; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1985. [Google Scholar]
- Onsager, L. Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 1931, 37, 405. [Google Scholar] [CrossRef]
- Andrews, G.E.; Bradley, D. The burning velocity of methane-air mixture. Combust. Flame 1972, 19, 275–288. [Google Scholar] [CrossRef]
- Johnston, W.; Johnston, W.C. Measures flame velocity of fuels at low pressures. Soc. Automot. Eng. J. 1947, 55, 62–65. [Google Scholar]
- Dugger, G.L. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures (NACA Report of Investigations No. 1061); Lewis Flight Propulsion Laboratory: Cleveland, OH, USA, 1952. [Google Scholar]
- Halpern, C. Measurement of flame speeds by a nozzle burner method. J. Res. Natl. Bur. Stand. 1958, 60, 535. [Google Scholar] [CrossRef]
- Babkin, V.; Kozachenko, L. Study of normal burning velocity in methane-air mixtures at high pressures. Combust. Explos. Shock Waves 1966, 2, 46–52. [Google Scholar] [CrossRef]
- Barassin, A.; Lisbet, R.; Combourieu, J.; Laffitte, P. Bull. Soc. Chim. France 1967, 7, 2521. [Google Scholar]
- Gu, X.J.; Haq, M.Z.; Lawes, M.; Woolley, R. Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust. Flame 2000, 121, 41–58. [Google Scholar] [CrossRef]
- Egerton, A.C.; Lefebvre, A. Flame propagation: The effect of pressure variation on burning velocities. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1954, 222, 206–223. [Google Scholar]
- Clingman, W.H.; Pease, R.N. Critical Considerations in the Measurement of Burning Velocities of Bunsen Burner Flames and Interpretation of the Pressure Effect. Measurements and Calculations for Methane 1. J. Am. Chem. Soc. 1956, 78, 1775–1780. [Google Scholar] [CrossRef]
- Diederichsen, J.; Wolfhard, H. The burning velocity of methane flames at high pressure. Trans. Faraday Soc. 1956, 52, 1102–1109. [Google Scholar] [CrossRef]
- Manton, J.; Milliken, B.; Proc, B. Gas Dynamics Symposium on Aerothermochemistry; Northwestern University: Evanton, Ill, USA, 1955. [Google Scholar]
- Singer, J.; Grumer, J.; Cook, E. Burning Velocities by the Bunsen Burner Method. I. Hydrocarbon-Oxyen Mixtures at One Atmosphere. II. Hydrocarbon-Air Mixtures at Subatmospherc Presusres; James Forrestal Research Center, Princeton University: Princeton, NJ, USA, 1955. [Google Scholar]
- Strauss, W.A.; Edse, R. Gas Dynamics Symposium on Aerothermochemistry; Northwestern University: Evanston, IL, USA, 1956. [Google Scholar]
- Gilbert, M. The influnence of pressure on flame speed. Symp. (Int.) Combust. 1957, 6, 74–83. [Google Scholar] [CrossRef]
- Agnew, J.; Graiff, L. The pressure dependence of laminar burning velocity by the spherical bomb method. Combust. Flame 1961, 5, 209–219. [Google Scholar] [CrossRef]
- Babkin, V.; Kozachenko, L.; Kuznetsov, I. The effect of pressure on the normal burning velocity of a methane–air mixture. Zhurnal Prikl. Mekhaniki Tekhnicheskoi Fiz. 1964, 3, 145–149. [Google Scholar]
- Bradley, D.; Hundy, G. Burning velocities of methane-air mixtures using hot-wire anemometers in closed-vessel explosions. Symp. Int. Combust. 1971, 13, 575–583. [Google Scholar] [CrossRef]
- Van Maaren, A.; Thung, D.; de Goey, L.P.H. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust. Sci. Technol. 1994, 96, 327–344. [Google Scholar] [CrossRef] [Green Version]
- Vagelopoulos, C.M.; Egolfopoulos, F.N. Direct experimental determination of laminar flame speeds. Symp. Int. Combust. 1998, 27, 513–519. [Google Scholar] [CrossRef]
- Bosschaart, K.J.; de Goey, L.R.H. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame 2004, 136, 261–269. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sher, E.; Moshkovich-Makarenko, I.; Moshkovich, Y.; Cukurel, B. Implementation of the Onsager Theorem to Evaluate the Speed of the Deflagration Wave. Entropy 2020, 22, 1011. https://doi.org/10.3390/e22091011
Sher E, Moshkovich-Makarenko I, Moshkovich Y, Cukurel B. Implementation of the Onsager Theorem to Evaluate the Speed of the Deflagration Wave. Entropy. 2020; 22(9):1011. https://doi.org/10.3390/e22091011
Chicago/Turabian StyleSher, Eran, Irena Moshkovich-Makarenko, Yahav Moshkovich, and Beni Cukurel. 2020. "Implementation of the Onsager Theorem to Evaluate the Speed of the Deflagration Wave" Entropy 22, no. 9: 1011. https://doi.org/10.3390/e22091011
APA StyleSher, E., Moshkovich-Makarenko, I., Moshkovich, Y., & Cukurel, B. (2020). Implementation of the Onsager Theorem to Evaluate the Speed of the Deflagration Wave. Entropy, 22(9), 1011. https://doi.org/10.3390/e22091011