Fate of Duplicated Neural Structures
Abstract
:1. Introduction
2. A Showcase of Duplicated Neural Structures
2.1. The Two Hemispheres
2.2. The Perisylvan Network for Human Language
2.3. Internalizing the Control of Movement
2.4. Place and Grid Cells—A Twofold Representation of Space?
2.5. Somatosensory and Motor Cortices
2.6. Reactive versus Predictive Brains
- Is there a threshold of cognitive complexity beyond which predictive brains always pay off? Protozoa reacting to gradients for chemotaxis hardly need a model of possible distributions of chemicals. The ability to dream in complex brains reveals the existence of generative models. When did they become favored?
- What environments are more likely to select for predictive brains? Picture a scene that varies wildly over time, often showing new inputs that a brain could hardly imagine based on previous experience. The cost of correcting hypotheses from generative models might be unbearable. Building representations anew from each incoming input (just as in deep neural networks) might be cheaper. Similarly, a pressure to anticipate the environment (e.g., to react to looming dangers) must be important—otherwise, reactive brains would do just as well and are cheaper.
- How did the duplicated circuitry needed for predictive brains emerge? Was a same system duplicated and reversed? Did, instead, a structure dedicated to error propagation grow over a previously existing scaffold, reversing the flow of information as it expanded? Is there a site in a cognitive hierarchy in which the predictive stance is more easily adopted and, hence, the needed circuitry expands from there? Or did both flow directions of predictive brains evolve simultaneously since early? This later possibility demands that even simple brains allow the predictive way of working, which might be possible [161,162,163,164]. Note that complex brains might also work in a reactive manner if needed—as reflexes do in advanced nervous systems [108].
2.7. The Cortical Column
3. Simple Models for a Complex Research Line
3.1. A Naive Cost-Efficiency Model of Duplicated Circuitry for Complex Tasks
- A neural structure garners a fitness advantage by successfully implementing some computation. This results in a cognitive phenotype that makes the organism more apt at navigating its environment, mating, obtaining food, etc; thus, securing more energy to sustain its metabolism and, eventually, increasing progeny. A duplicated neural structure can result in computational robustness (i.e., more reliable cognition), even with faulty components [173,174].
- Computation is costly. A circuit’s physical structure (neurons, synapses, etc.) has a material and metabolic stress. Signaling between neurons has a high energetic toll [175], thus a circuit’s cost grows with its wiring complexity, or if connections become too long [139]. Duplicated structures would pay twice these costs, resulting in a pressure against redundancy [176,177].
- Coordinating duplicates is also costly. It often requires additional structures (with its associated costs) to integrate the many outputs. If missing, failure to coordinate can become pathological [178]. If the duplicated structures are far apart (e.g., at bilaterally-symmetric, distant positions in each hemisphere), output integration would pay the cost of lengthy connections as well. This results in further pressures against duplicated circuits [177,179,180].
- In the first (uncooperative) scenario, each subcircuit implements a task different and independent from the tasks of other submodules. The implementation of each task results in a fitness benefit, independently of whether the other subcircuits function correctly.
- In the second (cooperative) scenario, the neural structure has been presented a chance to evolve a more complex cognitive phenotype. Its successful implementation reports a large fitness benefit—but only if all tasks are correctly implemented. Thus, while each subcircuit still performs different computations, they are no longer independent.
3.2. The Garden of Forking Neural Structures
- Is one of them lost, thus reverting to the original configuration? Subsequently, duplicating this structure was never favorable in the first place. Do they help each other instead, achieving a more robust computation?
- Do they become respectively specialized in pre-processing the input and producing elaborated outputs (Figure 3b)? This reminds us of the specialization of somatosensory and motor cortices, or of Wernicke’s and Broca’s area—rather processing input and producing output syntax, respectively.
- As the neuron is duplicated, the fitness landscape of computational possibilities changes. For example, it might become feasible to implement the original function in a hierarchical fashion, as we have seen in motor control. Might the neurons arrange themselves in a ‘controller-controlled’ architecture (Figure 3c)? Might them, instead, take care of different subsets of the function—becoming effectively uncoupled? Or might they unlock previously unavailable phenotypes, thus expanding the computational landscape (Figure 3d)?
4. Discussion
- Two phases exist for uncooperative preconditions: one with a single structure and another with a duplicated structure. Large coordination costs (e.g., because the structures are far apart) result in a single structure. This supports that functions must lateralize due to enlarged brains [139].
- An additional third phase appears in cooperating preconditions. In it, the complex phenotype cannot emerge. Furthermore, the diagram is distorted, so each phase happens for different parameters than before.
- Superposing both diagrams shows evolutionary paths for the emerging phenotype, including:
- ₋
- A reliable path that results in the duplication of single neural structures. This has been proposed as a frequent mechanism for unfolding cognitive complexity [188].
- ₋
- The absence of a direct route from duplicated to single structures. This suggests that the emergence of novel function cannot prompt lateralization (e.g., as in language) with the elements in our cost–benefit study alone.
Funding
Acknowledgments
Conflicts of Interest
References
- Kauffman, S.A. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Smith, E.; Morowitz, H.J. The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Eigen, M. Natural selection: A phase transition? Biophys. Chem. 2000, 85, 101–123. [Google Scholar] [CrossRef]
- Kempes, C.P.; Wolpert, D.; Cohen, Z.; Pérez-Mercader, J. The thermodynamic efficiency of computations made in cells across the range of life. Philos. Trans. R. Soc. A 2017, 375, 20160343. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, D.; Kempes, C.; Stadler, P.F.; Grochow, J.A. The Energetics of Computing in Life and Machines; Santa Fe Institute Press: Santa Fe, NM, USA, 2019. [Google Scholar]
- Drossel, B. Biological evolution and statistical physics. Adv. Phys. 2001, 50, 209–295. [Google Scholar] [CrossRef]
- Goldenfeld, N.; Woese, C. Life is physics: Evolution as a collective phenomenon far from equilibrium. Annu. Rev. Condens. Matter Phys. 2011, 2, 375–399. [Google Scholar] [CrossRef] [Green Version]
- England, J.L. Statistical physics of self-replication. J. Chem. Phys. 2013, 139, 09B623_1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perunov, N.; Marsland, R.A.; England, J.L. Statistical physics of adaptation. Phys. Rev. X 2016, 6, 021036. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.H. The free energy requirements of biological organisms; implications for evolution. Entropy 2016, 18, 138. [Google Scholar] [CrossRef]
- Fellermann, H.; Corominas-Murtra, B.; Hansen, P.L.; Ipsen, J.H.; Solé, R.; Rasmussen, S. Non-equilibrium thermodynamics of self-replicating protocells. arXiv 2015, arXiv:1503.04683. [Google Scholar]
- Corominas-Murtra, B. Thermodynamics of duplication thresholds in synthetic protocell systems. Life 2019, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Corominas-Murtra, B.; Fellermann, H.; Solé, R. Protocell cycles as thermodynamic cycles. In The Energetics of Computing in Life and Machines; Wolpert, D.H., Kempes, C., Grochow, J.A., Stadler, P.F., Eds.; Santa Fe Institute Press: Santa Fe, NM, USA, 2019. [Google Scholar]
- Friston, K. Life as we know it. J. R. Soc. Interface 2013, 10, 20130475. [Google Scholar] [CrossRef] [Green Version]
- Kempes, C.P.; Dutkiewicz, S.; Follows, M.J. Growth, metabolic partitioning, and the size of microorganisms. Proc. Natl. Acad. Sci. USA 2012, 109, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Kempes, C.P.; Wang, L.; Amend, J.P.; Doyle, J.; Hoehler, T. Evolutionary tradeoffs in cellular composition across diverse bacteria. ISME J. 2016, 10, 2145–2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopfield, J.J. Physics, computation, and why biology looks so different. J. Theor. Biol. 1994, 171, 53–60. [Google Scholar] [CrossRef]
- Smith, J.M. The concept of information in biology. Philos. Sci. 2000, 67, 177–194. [Google Scholar] [CrossRef]
- Joyce, G.F. Booting up life. Nature 2002, 420, 278–279. [Google Scholar] [CrossRef] [PubMed]
- Nurse, P. Life, logic and information. Nature 2008, 454, 424–426. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, D.C. Darwinian demons, evolutionary complexity, and information maximization. Chaos 2011, 21, 037110. [Google Scholar] [CrossRef]
- Joyce, G.F. Bit by bit: The Darwinian basis of life. PLoS Biol. 2012, 10, e1001323. [Google Scholar] [CrossRef]
- Mehta, P.; Schwab, D.J. Energetic costs of cellular computation. Proc. Natl. Acad. Sci. USA 2012, 109, 17978–17982. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.I.; Davies, P.C. The algorithmic origins of life. J. R. Soc. Interface 2013, 10, 20120869. [Google Scholar] [CrossRef]
- Lang, A.H.; Fisher, C.K.; Mora, T.; Mehta, P. Thermodynamics of statistical inference by cells. Phys. Rev. Lett. 2014, 113, 148103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo, J.; Grilli, J.; Suweis, S.; Munoz, M.A.; Banavar, J.R.; Maritan, A. Information-based fitness and the emergence of criticality in living systems. Proc. Natl. Acad. Sci. USA 2014, 111, 10095–10100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, P.; Lang, A.H.; Schwab, D.J. Landauer in the age of synthetic biology: Energy consumption and information processing in biochemical networks. J. Stat. Phys. 2016, 162, 1153–1166. [Google Scholar] [CrossRef] [Green Version]
- Tkačik, G.; Bialek, W. Information processing in living systems. Annu. Rev. Conden. Matter Phys. 2016, 7, 89–117. [Google Scholar] [CrossRef] [Green Version]
- Seoane, L.F.; Solé, R.V. Information theory, predictability and the emergence of complex life. R. Soc. Open Sci. 2016, 5, 172221. [Google Scholar] [CrossRef] [Green Version]
- Seoane, L.F.; Solé, R. How Turing parasites expand the computational landscape of life. arXiv 2019, arXiv:1910.14339. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. II. Phys. Rev. 1957, 108, 171. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Parrondo, J.M.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Wolpert, D.H. The stochastic thermodynamics of computation. J. Phys. A 2019, 52, 193001. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.; Kolchinsky, A. The thermodynamics of computing with circuits. New J. Phys. 2020, 22, 063047. [Google Scholar] [CrossRef] [Green Version]
- Ollé-Vila, A.; Seoane, L.F.; Solé, R. Ageing, computation and the evolution of neural regeneration processes. J. R. Soc. Interface 2020, 17, 20200181. [Google Scholar] [CrossRef] [PubMed]
- Oberlaender, M.; de Kock, C.P.; Bruno, R.M.; Ramirez, A.; Meyer, H.S.; Dercksen, V.J.; Helmstaedter, M.; Sakmann, B. Cell type–specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb. Cortex 2012, 22, 2375–2391. [Google Scholar] [CrossRef]
- Solé, R.; Moses, M.; Forrest, S. Liquid brains, solid brains. Philos. Trans. R. Soc. B 2019, 374, 20190040. [Google Scholar] [CrossRef]
- Martínez-Corral, R.; Liu, J.; Prindle, A.; Süel, G.M.; García-Ojalvo, J. Metabolic basis of brain-like electrical signalling in bacterial communities. Philos. Trans. R. Soc. B 2019, 374, 20180382. [Google Scholar] [CrossRef] [Green Version]
- Boussard, A.; Delescluse, J.; Pérez-Escudero, A.; Dussutour, A. Memory inception and preservation in slime moulds: The quest for a common mechanism. Philos. Trans. R. Soc. B 2019, 374, 20180368. [Google Scholar] [CrossRef] [Green Version]
- Duran-Nebreda, S.; Bassel, G.W. Plant behaviour in response to the environment: Information processing in the solid state. Philos. Trans. R. Soc. B 2019, 374, 20180370. [Google Scholar] [CrossRef] [Green Version]
- Oborny, B. The plant body as a network of semi-autonomous agents: A review. Philos. Trans. R. Soc. B 2019, 374, 20180371. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.; Kilner, J.; Harrison, L. A free energy principle for the brain. J. Phys. Paris 2006, 100, 70–87. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.J.; Stephan, K.E. Free-energy and the brain. Synthese 2007, 159, 417–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friston, K. The free-energy principle: A rough guide to the brain? Trends Cogn. Sci. 2009, 13, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Solé, R. Statistical physics of liquid brains. Philos. Trans. R. Soc. B 2019, 374, 20180376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vining, W.F.; Esponda, F.; Moses, M.E.; Forrest, S. How does mobility help distributed systems compute? Philos. Trans. R. Soc. B 2019, 374, 20180375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef]
- Maass, W.; Natschläger, T.; Markram, H. Fading memory and kernel properties of generic cortical microcircuit models. J. Physiol. Paris 2004, 98, 315–330. [Google Scholar] [CrossRef]
- Burgsteiner, H. Training networks of biological realistic spiking neurons for real-time robot control. In Proceedings of the 9th International Conference on Engineering Applications of Neural Networks, Lille, France, 24–26 August 2005; pp. 129–136. [Google Scholar]
- Legenstein, R.; Maass, W. Edge of chaos and prediction of computational performance for neural circuit models. Neural Netw. 2007, 20, 323–334. [Google Scholar] [CrossRef]
- Maass, W.; Joshi, P.; Sontag, E.D. Computational aspects of feedback in neural circuits. PLoS Comput. Biol. 2007, 3, e165. [Google Scholar] [CrossRef]
- Maass, W. Searching for principles of brain computation. Curr. Opin. Behav. Sci. 2016, 11, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Seoane, L.F. Evolutionary aspects of reservoir computing. Philos. Trans. R. Soc. B 2019, 374, 20180377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solé, R. Phase Transitions; Santa Fe Institute Press: Santa Fe, NM, USA, 2011. [Google Scholar]
- Goldenfeld, N. Lectures On Phase Transitions and the Renormalization Group; CRC Press: Cleveland, OH, USA, 2018. [Google Scholar]
- Davidson, A.J.; Hugdahl, K. (Eds.) Brain Asymmetry; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Sompolinsky, H. Statistical mechanics of neural networks. Phys. Today 1988, 41, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Clune, J.; Mouret, J.B.; Lipson, H. The evolutionary origins of modularity. Proc. R. Soc. B 2013, 280, 20122863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengistu, H.; Huizinga, J.; Mouret, J.B.; Clune, J. The evolutionary origins of hierarchy. PLoS Comput. Biol. 2016, 12, e1004829. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 2001, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; Univeisity of Illinois Press: Champaign, IL, USA, 1949. [Google Scholar]
- Crutchfield, J.P. The calculi of emergence: Computation, dynamics and induction. Physica D 1994, 75, 11–54. [Google Scholar] [CrossRef]
- Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057. [Google Scholar]
- Shalizi, C.R.; Moore, C. What is a macrostate? Subjective observations and objective dynamics. arXiv 2003, arXiv:cond-mat/0303625. [Google Scholar]
- Israeli, N.; Goldenfeld, N. Coarse-graining of cellular automata, emergence, and the predictability of complex systems. Phys. Rev. E 2006, 73, 026203. [Google Scholar] [CrossRef] [Green Version]
- Still, S.; Crutchfield, J.P.; Ellison, C.J. Optimal causal inference: Estimating stored information and approximating causal architecture. Chaos 2010, 20, 037111. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.H.; Grochow, J.A.; Libby, E.; DeDeo, S. Optimal high-level descriptions of dynamical systems. arXiv 2014, arXiv:1409.7403. [Google Scholar]
- Marzen, S.E.; Crutchfield, J.P. Predictive rate-distortion for infinite-order Markov processes. J. Stat. Phys. 2016, 163, 1312–1338. [Google Scholar] [CrossRef] [Green Version]
- Seoane, L.F.; Solé, R. Criticality in Pareto Optimal Grammars? Entropy 2020, 22, 165. [Google Scholar] [CrossRef] [Green Version]
- Seoane, L.F. Evolutionary paths to lateralization of complex functions. 2020; unpublished. [Google Scholar]
- Harrington, A. Unfinished business: Models of laterality in the nineteenth century. In Brain Asymmetry; Davidson, A.J., Hugdahl, K., Eds.; MIT Press: Cambridge, MA, USA, 1995; pp. 3–27. [Google Scholar]
- Swanson, L.W. What is the brain? Trends Neurosci. 2000, 23, 519–527. [Google Scholar] [CrossRef]
- Northcutt, R.G. Understanding vertebrate brain evolution. Integr. Comp. Biol. 2002, 42, 743–756. [Google Scholar] [CrossRef] [PubMed]
- Holland, N.D. Early central nervous system evolution: An era of skin brains? Nat. Rev. Neurosci. 2003, 4, 617–627. [Google Scholar] [CrossRef]
- Watanabe, H.; Fujisawa, T.; Holstein, T.W. Cnidarians and the evolutionary origin of the nervous system. Dev. Growth Differ. 2009, 51, 167–183. [Google Scholar] [CrossRef]
- Penfield, W.; Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937, 60, 389–443. [Google Scholar] [CrossRef]
- Danelli, L.; Cossu, G.; Berlingeri, M.; Bottini, G.; Sberna, M.; Paulesu, E. Is a lone right hemisphere enough? Neurolinguistic architecture in a case with a very early left hemispherectomy. Neurocase 2013, 19, 209–231. [Google Scholar] [CrossRef]
- Kliemann, D.; Adolphs, R.; Tyszka, J.M.; Fischl, B.; Yeo, B.T.; Nair, R.; Dubois, J.; Paul, L.K. Intrinsic Functional Connectivity of the Brain in Adults with a Single Cerebral Hemisphere. Cell Rep. 2019, 29, 2398–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, R.J.; Schreiner, L.H.; Hughes, R.A.; MacCarty, C.S.; Grindlay, J.H. Physiologic consequences of total hemispherectomy in the monkey. Neurology 1959, 9, 149–159. [Google Scholar]
- Ivanova, A.; Zaidel, E.; Salamon, N.; Bookheimer, S.; Uddin, L.Q.; de Bode, S. Intrinsic functional organization of putative language networks in the brain following left cerebral hemispherectomy. Brain Struct. Funct. 2017, 222, 3795–3805. [Google Scholar] [CrossRef] [PubMed]
- Hertz-Pannier, L.; Chiron, C.; Jambaqué, I.; Renaux-Kieffer, V.; Moortele, P.F.V.D.; Delalande, O.; Fohlen, M.; Brunelle, F.; Bihan, D.L. Late plasticity for language in a child’s non-dominant hemisphere: A pre-and post-surgery fMRI study. Brain 2002, 125, 361–372. [Google Scholar] [CrossRef]
- Liégeois, F.; Connelly, A.; Baldeweg, T.; Vargha-Khadem, F. Speaking with a single cerebral hemisphere: FMRI language organization after hemispherectomy in childhood. Brain Lang. 2008, 106, 195–203. [Google Scholar] [CrossRef]
- Piattelli-Palmarini, M. Normal language in abnormal brains. Neurosci. Biobehav. R. 2017, 81, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Smith, A. Speech and other functions after left (dominant) hemispherectomy. J. Neurol. Neurosur. Psychiatry 1966, 29, 467. [Google Scholar] [CrossRef] [Green Version]
- Galaburda, A.M. Anatomic basis of cerebral dominance. In Brain Asymmetry; Davidson, A.J., Hugdahl, K., Eds.; MIT Press: Cambridge, MA, USA, 1995; pp. 51–73. [Google Scholar]
- Peters, M. Handedness and its relation to other indices of cerebral lateralization. In Brain Asymmetry; Davidson, A.J., Hugdahl, K., Eds.; MIT Press: Cambridge, MA, USA, 1995; pp. 183–214. [Google Scholar]
- Geschwind, N. Language and the brain. Sci. Am. 1972, 226, 76–83. [Google Scholar] [CrossRef]
- Catani, M.; Jones, D.K.; Ffytche, D.H. Perisylvian language networks of the human brain. Ann. Neurol. 2005, 57, 8–16. [Google Scholar] [CrossRef]
- Fedorenko, E.; Kanwisher, N. Neuroimaging of language: Why hasn’t a clearer picture emerged? Lang. Linguist. 2009, 3, 839–865. [Google Scholar] [CrossRef] [Green Version]
- Fedorenko, E.; Nieto-Castanon, A.; Kanwisher, N. Lexical and syntactic representations in the brain: An fMRI investigation with multi-voxel pattern analyses. Neuropsychologia 2012, 50, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, E.; Thompson-Schill, S.L. Reworking the language network. Trends Cogn. Sci. 2014, 18, 120–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blank, I.; Balewski, Z.; Mahowald, K.; Fedorenko, E. Syntactic processing is distributed across the language system. Neuroimage 2016, 127, 307–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berwick, R.C.; Chomsky, N. Why Only Us: Language and Evolution; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Brown, H.D.; Kosslyn, S.M. Hemispheric differences in visual object processing: Structural versus allocation theories. In Brain Asymmetry; Davidson, A.J., Hugdahl, K., Eds.; MIT Press: Cambridge, MA, USA, 1995; pp. 77–97. [Google Scholar]
- Hellige, J.B. Hemispheric asymmetry for components of visual information processing. In Brain Asymmetry; Davidson, A.J., Hugdahl, K., Eds.; MIT Press: Cambridge, MA, USA, 1995; pp. 99–121. [Google Scholar]
- Bishop, D.V. Cerebral asymmetry and language development: Cause, correlate, or consequence? Science 2013, 340. [Google Scholar] [CrossRef] [Green Version]
- Hiscock, M.; Kinsbourne, M. Phylogeny and ontogeny of cerebral lateralization. In Brain Asymmetry; Davidson, A.J., Hugdahl, K., Eds.; MIT Press: Cambridge, MA, USA, 1995; pp. 535–578. [Google Scholar]
- Seoane, L.F.; Solé, R. Simplest model of brain reorganization after hemispherectomy. 2020; unpublished. [Google Scholar]
- Perani, D.; Saccuman, M.C.; Scifo, P.; Anwander, A.; Spada, D.; Baldoli, C.; Poloniato, A.; Lohmann, G.; Friederici, A.D. Neural language networks at birth. Proc. Natl. Acad. Sci. USA 2011, 108, 16056–16061. [Google Scholar] [CrossRef] [Green Version]
- Barceló-Coblijn, L.; Serna Salazar, D.; Isaza, G.; Castillo Ossa, L.F.; Bedia, M.G. Netlang: A Softw. Linguist. Anal. Corpora Means Complex Networks. PLoS ONE 2017, 12, e0181341. [Google Scholar] [CrossRef]
- Llinás, R.R. I of the Vortex: From Neurons to Self; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Yuste, R.; MacLean, J.N.; Smith, J.; Lansner, A. The cortex as a central pattern generator. Nat. Rev. Neurosci. 2005, 6, 477–483. [Google Scholar] [CrossRef]
- Cruse, H.; Dürr, V.; Schmitz, J. Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos. Trans. R. Soc. A 2007, 365, 221–250. [Google Scholar] [CrossRef]
- Schilling, M.; Cruse, H. Decentralized control of insect walking: A simple neural network explains a wide range of behavioral and neurophysiological results. PLoS Comput. Biol. 2020, 16, e1007804. [Google Scholar] [CrossRef]
- Sherrington, C. The Integrative Action of the Nervous System; Yale University Press: New York, NY, USA, 1948. [Google Scholar]
- Ijspeert, A.J. Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 2008, 21, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Marder, E.; Calabrese, R.L. Principles of rhythmic motor pattern generation. Physiol. Rev. 1996, 76, 687–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herculano-Houzel, S.; Kaas, J.H.; de Oliveira-Souza, R. Corticalization of motor control in humans is a consequence of brain scaling in primate evolution. J. Comp. Neurol. 2016, 524, 448–455. [Google Scholar] [CrossRef]
- O’Keefe, J.; Dostrovsky, J. The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971, 34, 171–175. [Google Scholar] [CrossRef]
- O’keefe, J.; Nadel, L. The Hippocampus as a Cognitive Map; Clarendon Press: Oxford, UK, 1978. [Google Scholar]
- Hafting, T.; Fyhn, M.; Molden, S.; Moser, M.B.; Moser, E.I. Microstructure of a spatial map in the entorhinal cortex. Nature 2005, 436, 801–806. [Google Scholar] [CrossRef]
- Bush, D.; Barry, C.; Manson, D.; Burgess, N. Using grid cells for navigation. Neuron 2015, 87, 507–520. [Google Scholar] [CrossRef] [Green Version]
- Stemmler, M.; Mathis, A.; Herz, A.V. Connecting multiple spatial scales to decode the population activity of grid cells. Sci. Adv. 2015, 1, e1500816. [Google Scholar] [CrossRef] [Green Version]
- McNaughton, B.L.; Battaglia, F.P.; Jensen, O.; Moser, E.I.; Moser, M.B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 2006, 7, 663–678. [Google Scholar] [CrossRef]
- Fyhn, M.; Hafting, T.; Treves, A.; Moser, M.B.; Moser, E.I. Hippocampal remapping and grid realignment in entorhinal cortex. Nature 2007, 446, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Moser, E.I.; Kropff, E.; Moser, M.B. Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 2008, 31, 69–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, D.; Barry, C.; Burgess, N. What do grid cells contribute to place cell firing? Trends Neurosci. 2014, 37, 136–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, D.J.; Wilson, M.A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 2006, 440, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Colgin, L.L.; Moser, E.I.; Moser, M.-B. Understanding memory through hippocampal remapping. Trends Neurosci. 2008, 31, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Aronov, D.; Nevers, R.; Tank, D.W. Mapping of a non-spatial dimension by the hippocampal/entorhinal circuit. Nature 2017, 543, 719–722. [Google Scholar] [CrossRef]
- Rueckert, E.; Kappel, D.; Tanneberg, D.; Pecevski, D.; Peters, J. Recurrent spiking networks solve planning tasks. Sci. Rep. 2016, 6, 21142. [Google Scholar] [CrossRef]
- Maass, W. Noise as a resource for computation and learning in networks of spiking neurons. Proc. IEEE 2014, 102, 860–880. [Google Scholar] [CrossRef]
- Maass, W. To spike or not to spike: That is the question. Proc. IEEE 2015, 103, 2219–2224. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, K.J. Integration of the sensory inputs to place cells: What, where, why, and how? Hippocampus 2007, 17, 775–785. [Google Scholar] [CrossRef]
- Lew, A.R. Looking beyond the boundaries: Time to put landmarks back on the cognitive map? Psychol. Bull. 2011, 137, 484. [Google Scholar] [CrossRef]
- Muller, R.U.; Kubie, J.L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 1987, 7, 1951–1968. [Google Scholar] [CrossRef]
- Deadwyler, S.A.; Breese, C.R.; Hampson, R.E. Control of place-cell activity in an open field. Psychobiology 1989, 17, 221–227. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, J. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 1976, 51, 78–109. [Google Scholar] [CrossRef]
- Stachenfeld, K.L.; Botvinick, M.M.; Gershman, S.J. The hippocampus as a predictive map. Nat. Neurosci. 2017, 20, 1643. [Google Scholar] [CrossRef] [PubMed]
- Behrens, T.E.; Muller, T.H.; Whittington, J.C.; Mark, S.; Baram, A.B.; Stachenfeld, K.L.; Kurth-Nelson, Z. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 2018, 100, 490–509. [Google Scholar] [CrossRef] [Green Version]
- Ferbinteanu, J.; Shapiro, M.L. Prospective and retrospective memory coding in the hippocampus. Neuron 2003, 40, 1227–1239. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.; Redish, A.D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 2007, 27, 12176–12189. [Google Scholar] [CrossRef] [Green Version]
- Sarel, A.; Finkelstein, A.; Las, L.; Ulanovsky, N. Vectorial representation of spatial goals in the hippocampus of bats. Science 2017, 355, 176–180. [Google Scholar] [CrossRef]
- Gauthier, J.L.; Tank, D.W. A dedicated population for reward coding in the hippocampus. Neuron 2018, 99, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Kaas, J.H. Evolution of somatosensory and motor cortex in primates. Anat. Rec. Part A 2004, 281, 1148–1156. [Google Scholar] [CrossRef]
- Kaas, J.H. The evolution of the complex sensory and motor systems of the human brain. Brain Res. Bull. 2008, 75, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Beck, P.D.; Pospichal, M.W.; Kaas, J.H. Topography, architecture, and connections of somatosensory cortex in opossums: Evidence for five somatosensory areas. J. Comp. Neurol. 1996, 366, 109–133. [Google Scholar] [CrossRef]
- Walsh, T.M.; Ebner, F.F. Distribution of cerebellar and somatic lemniscal projections in the ventral nuclear complex of the Virginia opossum. J. Comp. Neurol. 1973, 147, 427–445. [Google Scholar] [CrossRef] [PubMed]
- Krubitzer, L.; Künzle, H.; Kaas, J. Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops Telfairi). J. Comp. Neurol. 1997, 379, 399–414. [Google Scholar] [CrossRef]
- Wu, C.W.H.; Kaas, J.H. Somatosensory cortex of prosimian Galagos: Physiological recording, cytoarchitecture, and corticocortical connections of anterior parietal cortex and cortex of the lateral sulcus. J. Comp. Neurol. 2003, 457, 263–292. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.C.; Stepniewska, I.; Kaas, J.H. Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti. J. Comp. Neurol. 2005, 490, 305–333. [Google Scholar] [CrossRef]
- Conant, R.C.; Ross Ashby, W. Every good regulator of a system must be a model of that system. Int. J. Syst. Sci. 1970, 1, 89–97. [Google Scholar] [CrossRef]
- Kaas, J.H. What, if anything, is SI? Organization of first somatosensory area of cortex. Physiol. Rev. 1983, 63, 206–231. [Google Scholar] [CrossRef]
- Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 2013, 36, 181–204. [Google Scholar] [CrossRef]
- Yuille, A.; Kersten, D. Vision as Bayesian inference: Analysis by synthesis? Trends Cogn. Sci. 2006, 10, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.P.; Ballard, D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999, 2, 79–87. [Google Scholar] [CrossRef]
- Lee, T.S.; Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A 2003, 20, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B 2005, 360, 815–836. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.; Friston, K.J.; Bestmann, S. Active inference, attention, and motor preparation. Front. Psychol. 2011, 2, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jehee, J.F.; Ballard, D.H. Predictive feedback can account for biphasic responses in the lateral geniculate nucleus. PLoS Comput. Biol. 2009, 5, e1000373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Rao, R.P. Predictive coding. WIREs Cogn. Sci. 2011, 2, 580–593. [Google Scholar] [CrossRef]
- Hohwy, J. Functional Integration and the mind. Synthese 2007, 159, 315–328. [Google Scholar] [CrossRef]
- Dayan, P.; Hinton, G.E.; Neal, R.M.; Zemel, R.S. The helmholtz machine. Neural Comput. 1995, 7, 889–904. [Google Scholar] [CrossRef]
- Dayan, P.; Hinton, G.E. Varieties of Helmholtz machine. Neural Netw. 1996, 9, 1385–1403. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E. Learning multiple layers of representation. Trends Cogn. Sci. 2007, 11, 428–434. [Google Scholar] [CrossRef]
- Fukushima, K.; Miyake, S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and Cooperation in Neural Nets; Springer: Berlin, Germany, 1982; pp. 267–285. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc.: Lake Tahoe, NV, USA, 2012; pp. 1097–1105. [Google Scholar]
- Voss, H.U. Anticipating chaotic synchronization. Phys. Rev. E 2000, 61, 5115. [Google Scholar] [CrossRef]
- Voss, H.U. Dynamic long-term anticipation of chaotic states. Phys. Rev. Lett. 2001, 87, 014102. [Google Scholar] [CrossRef] [PubMed]
- Matias, F.S.; Carelli, P.V.; Mirasso, C.R.; Copelli, M. Anticipated synchronization in a biologically plausible model of neuronal motifs. Phys. Rev. E 2011, 84, 021922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciszak, M.; Mayol, C.; Mirasso, C.R.; Toral, R. Anticipated synchronization in coupled complex Ginzburg-Landau systems. Phys. Rev. E 2015, 92, 032911. [Google Scholar] [CrossRef] [Green Version]
- Markram, H. The blue brain project. Nat. Rev. Neurosci. 2006, 7, 153–160. [Google Scholar] [CrossRef]
- Hawkins, J.; Blakeslee, S. On Intelligence: How a New Understanding of the Brain Will Lead to the Creation of Truly Intelligent Machines; Macmillan: New York, NY, USA, 2007. [Google Scholar]
- Meyer, H.S.; Egger, R.; Guest, J.M.; Foerster, R.; Reissl, S.; Oberlaender, M. Cellular organization of cortical barrel columns is whisker-specific. Proc. Natl. Acad. Sci. USA 2013, 110, 19113–19118. [Google Scholar] [CrossRef] [Green Version]
- Haeusler, S.; Maass, W. A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cereb. Cortex 2007, 17, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, D.; Häusler, S.; Singer, W.; Maass, W. Distributed fading memory for stimulus properties in the primary visual cortex. PLoS Biol. 2009, 7, e1000260. [Google Scholar] [CrossRef]
- Bernacchia, A.; Seo, H.; Lee, D.; Wang, X.J. A reservoir of time constants for memory traces in cortical neurons. Nat. Neurosci. 2011, 14, 366. [Google Scholar] [CrossRef]
- Chen, J.L.; Carta, S.; Soldado-Magraner, J.; Schneider, B.L.; Helmchen, F. Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature 2013, 499, 336–340. [Google Scholar] [CrossRef] [Green Version]
- Diamond, M.E.; Von Heimendahl, M.; Knutsen, P.M.; Kleinfeld, D.; Ahissar, E. ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat. Rev. Neurosci. 2008, 9, 601. [Google Scholar] [CrossRef]
- Von Neumann, J. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Autom. Stud. 1956, 34, 43–98. [Google Scholar]
- Winograd, S.; Cowan, J.D. Reliable Computation in the Presence of Noise; MIT Press: Cambridge, MA, USA, 1963. [Google Scholar]
- Attwell, D.; Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cerebr. Blood Flow Metab. 2001, 21, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Levy, J. The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann. N. Y. Acad. Sci. 1977, 299, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Ghirlanda, S.; Vallortigara, G. The evolution of brain lateralization: A game-theoretical analysis of population structure. Proc. R. Soc. Lond. B Biol. 2004, 271, 853–857. [Google Scholar] [CrossRef] [Green Version]
- Gazzaniga, M.S. Forty-five years of split-brain research and still going strong. Nat. Rev. Neurosci. 2005, 6, 653–659. [Google Scholar] [CrossRef]
- Rogers, L.J. Evolution of hemispheric specialization: Advantages and disadvantages. Brain Lang. 2000, 73, 236–253. [Google Scholar] [CrossRef]
- Güntürkün, O.; Diekamp, B.; Manns, M.; Nottelmann, F.; Prior, H.; Schwarz, A.; Skiba, M. Asymmetry pays: Visual lateralization improves discrimination success in pigeons. Curr. Biol. 2000, 10, 1079–1081. [Google Scholar] [CrossRef] [Green Version]
- Coello, C.C. Evolutionary multi-objective optimization: A historical view of the field. IEEE Comput. Intell. Mag. 2006, 1, 28–36. [Google Scholar] [CrossRef]
- Schuster, P. Optimization of multiple criteria: Pareto efficiency and fast heuristics should be more popular than they are. Complexity 2012, 18, 5–7. [Google Scholar] [CrossRef]
- Seoane, L.F. Multiobjetive Optimization in Models of Synthetic and Natural Living Systems. Ph.D. Thesis, Universitat Pompeu Fabra, Barcelona, Spain, 2016. [Google Scholar]
- Seoane, L.F.; Solé, R.V. A multiobjective optimization approach to statistical mechanics. arXiv 2013, arXiv:1310.6372. [Google Scholar]
- Seoane, L.F.; Solé, R. Systems poised to criticality through Pareto selective forces. arXiv 2015, arXiv:1510.08697. [Google Scholar]
- Seoane, L.F.; Solé, R. Multiobjective optimization and phase transitions. In Proceedings of ECCS 2014; Springer: Cham, Germany, 2016; pp. 259–270. [Google Scholar]
- Seoane, L.F.; Solé, R. Phase transitions in Pareto optimal complex networks. Phys. Rev. E 2015, 92, 032807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, M.; Jarvis, E.D. Brain evolution by brain pathway duplication. Philos. Trans. R. Soc. B 2015, 370, 20150056. [Google Scholar] [CrossRef] [Green Version]
- Hurley, I.; Hale, M.E.; Prince, V.E. Duplication events and the evolution of segmental identity. Evol. Dev. 2005, 7, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Oakley, T.H.; Rivera, A.S. Genomics and the evolutionary origins of nervous system complexity. Curr. Opin. Genet. Dev. 2008, 18, 479–492. [Google Scholar] [CrossRef]
- Caporale, N.; Dan, Y. Spike timing–dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Raup, D.M. Geometric analysis of shell coiling: General problems. J. Paleontol. 1966, 1178–1190. [Google Scholar]
- Niklas, K.J. The Evolutionary Biology of Plants; University of Chicago Press: Chicago, IL, USA, 1997. [Google Scholar]
- McGhee, G.R. Theoretical Morphology: The Concept and Its Applications; Columbia University Press: New York, NY, USA, 1999. [Google Scholar]
- Niklas, K.J. Computer models of early land plant evolution. Annu. Rev. Earth Planet. Sci. 2004, 32, 47–66. [Google Scholar] [CrossRef] [Green Version]
- Corominas-Murtra, B.; Goñi, J.; Solé, R.V.; Rodríguez-Caso, C. On the origins of hierarchy in complex networks. Proc. Natl. Acad. Sci. USA 2013, 110, 13316–13321. [Google Scholar] [CrossRef] [Green Version]
- Goñi, J.; Avena-Koenigsberger, A.; Velez de Mendizabal, N.; van den Heuvel, M.P.; Betzel, R.F.; Sporns, O. Exploring the morphospace of communication efficiency in complex networks. PLoS ONE 2013, 8, e58070. [Google Scholar] [CrossRef]
- Avena-Koenigsberger, A.; Goñi, J.; Solé, R.; Sporns, O. Network morphospace. J. R. Soc. Interface 2015, 12, 20140881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seoane, L.F.; Solé, R. The morphospace of language networks. Sci. Rep. 2018, 8, 10465. [Google Scholar] [CrossRef]
- Bickerton, D. Language and Species; University of Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Ferrer i Cancho, R.; Solé, R.V. Least effort and the origins of scaling in human language. Proc. Natl. Acad. Sci. USA 2003, 100, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Solé, R.V.; Seoane, L.F. Ambiguity in language networks. Linguist. Rev. 2015, 32, 5–35. [Google Scholar] [CrossRef]
- Marzen, S.; DeDeo, S. Weak universality in sensory tradeoffs. Phys. Rev. E 2016, 94, 060101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzen, S.E.; DeDeo, S. The evolution of lossy compression. J. R. Soc. Interface 2017, 14, 20170166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seoane, L.F. Fate of Duplicated Neural Structures. Entropy 2020, 22, 928. https://doi.org/10.3390/e22090928
Seoane LF. Fate of Duplicated Neural Structures. Entropy. 2020; 22(9):928. https://doi.org/10.3390/e22090928
Chicago/Turabian StyleSeoane, Luís F. 2020. "Fate of Duplicated Neural Structures" Entropy 22, no. 9: 928. https://doi.org/10.3390/e22090928
APA StyleSeoane, L. F. (2020). Fate of Duplicated Neural Structures. Entropy, 22(9), 928. https://doi.org/10.3390/e22090928