Probability Forecast Combination via Entropy Regularized Wasserstein Distance
Abstract
:1. Introduction
2. Regularized Wasserstein Barycenter for Density Forecast Combination
2.1. Equal-Weighted Linear Opinion Rule
2.2. Quantile Aggregation and the Wasserstein Barycenter
2.3. Regularized Wasserstein Barycenter
3. Analytical Results: The Impact of Entropy Regularization
4. On Choosing the Strength of the Regularization
5. Empirical Illustration
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
Appendix A
References
- Geweke, J.; Amisano, G. Optimal prediction pools. J. Econom. 2011, 164, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Lichtendahl, K.C.; Grushka-Cockayne, Y.; Winkler, R. Is it better to average probabilities or quantiles. Manag. Sci. 2013, 59, 1594–1611. [Google Scholar] [CrossRef]
- Busetti, F. Quantile aggregation of density forecasts. Oxf. Bullet. Econom. Stat. 2017, 79, 495–512. [Google Scholar] [CrossRef]
- Benamou, J.; Carlier, G.; Cuturi, M.; Nenna, L.; Peyre, G. Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 2015, 37, 1111–1138. [Google Scholar] [CrossRef] [Green Version]
- Janati, H.; Cuturi, M.; Gramfort, A. Debiased Sinkhorn barycenters. arxiv 2020, arXiv:2006.02575. [Google Scholar]
- Timmermann, A. Forecast combinations. In Handbook of Economic Forecasting; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 135–196. [Google Scholar]
- Clemen, R. Combining forecasts: A review and annotated bibliography. Int. J. Forecast. 1989, 5, 559–583. [Google Scholar] [CrossRef]
- Villani, C. Topics in Optimal Transportation; American Mathematical Soc.: Providence, RI, USA, 2003; Volume 58. [Google Scholar]
- Galichon, A. Optimal Transport Methods in Economics; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Ratcliff, R. Group reaction time distributions and an analysis of distribution statistics. Psychol. Bullet. 1979, 86, 446–461. [Google Scholar] [CrossRef]
- Genest, C. Vincentization revisited. Ann. Stat. 1992, 20, 1137–1142. [Google Scholar] [CrossRef]
- Agueh, M.; Carlier, G. Barycenters in the Wasserstein space. SIAM J. Math. Anal. 2011, 43, 904–924. [Google Scholar] [CrossRef] [Green Version]
- Knott, M.; Smith, C.S. On a generalization of cyclic monotonicity and distances among random vectors. Linear Algebra Appl. 1994, 199, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Cuturi, M. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. In Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013. [Google Scholar]
- Peyré, G.; Cuturi, M. Computational optimal transport: With applications to data science. Found. Trends Mach. Learn. 2019, 11, 355–607. [Google Scholar] [CrossRef]
- Sinkhorn, R. Diagonal equivalence to matrices with prescribed row and column sums. Am. Math. Mon. 1967, 74, 402–405. [Google Scholar] [CrossRef]
- Ran, A.C.; Reurings, M.C. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Cuturi, M.; Doucet, A. Fast computation of Wasserstein barycenters. In Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014. [Google Scholar]
- Solomon, J.; De Goes, F.; Peyré, G.; Cuturi, M.; Butscher, A.; Nguyen, A.; Du, T.; Guibas, L. Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ACM Trans. Graph. 2015, 34, 66. [Google Scholar] [CrossRef]
- Dvurechensky, P.; Dvinskikh, D.; Gasnikov, A.; Uribe, C.; Nedic, A. Decentralize and randomize: Faster algorithm for Wasserstein barycenters. In Proceedings of the Annual Conference on Neural Information Processing Systems 2018, Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Kroshnin, A.; Tupitsa, N.; Dvinskikh, D.; Dvurechensky, P.; Gasnikov, A.; Uribe, C. On the complexity of approximating Wasserstein barycenters. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019. [Google Scholar]
- Lin, T.; Ho, N.; Chen, X.; Cuturi, M.; Jordan, M.I. Fixed-support Wasserstein barycenters: Computational hardness and fast algorithm. arXiv 2020, arXiv:2002.04783v4. [Google Scholar]
- Lin, T.; Ho, N.; Cuturi, M.; Jordan, M.I. On the complexity of approximating multimarginal optimal transport. arXiv 2020, arXiv:1910.00152v2. [Google Scholar]
- Janati, H.; Muzellec, B.; Peyré, G.; Cuturi, M. Entropic optimal transport between (unbalanced) Gaussian measures has a closed form. arXiv 2020, arXiv:2006.02572. [Google Scholar]
- Mallasto, A.; Gerolin, A.; Minh, H.Q. Entropy-regularized 2-Wasserstein distance between Gaussian measures. arXiv 2020, arXiv:2006.03416. [Google Scholar]
- Del Negro, M.; Hasegawa, R.; Schorfheide, F. Dynamic prediction pools: An investigation of financial frictions and forecasting performance. J. Econom. 2016, 192, 391–405. [Google Scholar] [CrossRef] [Green Version]
- White, H. Maximum likelihood estimation of misspecified models. Econometrica 1982, 50, 1–25. [Google Scholar] [CrossRef]
- Bollerslev, T.; Wooldridge, J.M. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econom. Rev. 1992, 11, 143–172. [Google Scholar] [CrossRef]
- McCracken, M.; Ng, S. FRED-QD: A Quarterly Database for Macroeconomic Research; Working Paper No. 26872; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef] [Green Version]
- Diebold, F.X.; Shin, M. Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives. Int. J. Forecast. 2019, 35, 1679–1691. [Google Scholar] [CrossRef]
- Bromiley, P. Products and convolutions of Gaussian probability density functions. Tina-Vision Memo 2003, 3, 1. [Google Scholar]
Used by | Variable Description | FRED-QD Mnemonic | |
Variable 1 | All | Inflation rate | GDPCTPI |
Variable 2 | All | Real GDP growth rate | GDPC1 |
Variable 3 | Forecaster 1 | Real Personal Consumption Expenditures | PCECC96 |
Forecaster 2 | Industrial Production Index | INDPRO | |
Forecaster 3 | All Employees: Total Nonfarm | PAYEMS | |
Forecaster 4 | Housing Starts: Total Privately Owned Housing Units Started | HOUST | |
Forecaster 5 | Real Manufacturing and Trade Industries Sales | CMRMTSPLx | |
Forecaster 6 | Real Crude Oil Prices: West Texas Intermediate (WTI) | OILPRICEx | |
Forecaster 7 | Real Average Hourly Earnings: Manufacturing | CES3000000008x | |
Forecaster 8 | 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill | GS10TB3Mx | |
Forecaster 9 | Real Commercial and Industrial Loans | BUSLOANSx | |
Forecaster 10 | Real Total Assets of Households and Nonprofit Organizations | TABSHNOx | |
Forecaster 11 | U.S. / U.K. Foreign Exchange Rate | EXUSUKx | |
Forecaster 12 | Consumer Sentiment (University of Michigan) | UMCSENTx | |
Forecaster 13 | S&P’s Common Stock Price Index: Composite | S&P 500 | |
Forecaster 14 | Real Disposable Business Income | CNCFx |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cumings-Menon, R.; Shin, M. Probability Forecast Combination via Entropy Regularized Wasserstein Distance. Entropy 2020, 22, 929. https://doi.org/10.3390/e22090929
Cumings-Menon R, Shin M. Probability Forecast Combination via Entropy Regularized Wasserstein Distance. Entropy. 2020; 22(9):929. https://doi.org/10.3390/e22090929
Chicago/Turabian StyleCumings-Menon, Ryan, and Minchul Shin. 2020. "Probability Forecast Combination via Entropy Regularized Wasserstein Distance" Entropy 22, no. 9: 929. https://doi.org/10.3390/e22090929
APA StyleCumings-Menon, R., & Shin, M. (2020). Probability Forecast Combination via Entropy Regularized Wasserstein Distance. Entropy, 22(9), 929. https://doi.org/10.3390/e22090929