A Maximum Entropy Production Hypothesis for Time Varying Climate Problems: Illustration on a Conceptual Model for the Seasonal Cycle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Time Dependent MEP-Based Climate Models
- Atmospheric () and oceanic () energy fluxes from box to (in W);
- Surface energy fluxes due to sensible and latent heat fluxes between the ground and the atmosphere (in W);
- Conduction in the ground between box and box is noted (in W). In oceans, energy transfers can also occur by turbulent mixing and oceanic circulation. We have neglected the horizontal diffusion in the ground due to the large aspect ratio of the Earth’s crust.
2.2. Simplified Case
3. Results
- Influence of : lag of ground:
- Influence of : bottom to top diffusion:
- Influence of :
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Numerical Algorithm
- The equations correspond to a dynamical system of unknown that we formally write as
- We discretize the cycle in T discrete time steps . The temporal derivative of a function f at time is expressed using the second order approximation . Formally, the dynamical system is transformed into an equation of unknown :
- (a)
- We consider , a reference point for the nth iteration.
- (b)
- We linearize the equation around :
- (c)
- Keeping only the first order, we obtain the correction for the next iteration:
- (d)
- We reiterate the last steps until convergence.
References
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, e187. [Google Scholar]
- Friehe, C.A.; Schmitt, K.F. Parameterization of Air-Sea Interface Fluxes of Sensible Heat and Moisture by the Bulk Aerodynamic Formulas. J. Phys. Oceanogr. 1976, 6, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Large, W.G.; Pond, S. Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Large, W.G.; Pond, S. Sensible and Latent Heat Flux Measurements over the Ocean. J. Phys. Oceanogr. 1982, 12, 464–482. [Google Scholar] [CrossRef] [Green Version]
- DeCosmo, J.; Katsaros, K.B.; Smith, S.D.; Anderson, R.J.; Oost, W.A.; Bumke, K.; Chadwick, H. Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res. Ocean. 1996, 101, 12001–12016. [Google Scholar] [CrossRef] [Green Version]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. Ocean. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Louis, J.F. A parametric model of vertical eddy fluxes in the atmosphere. Bound. Layer Meteorol. 1979, 17, 187–202. [Google Scholar] [CrossRef]
- Kara, A.B.; Rochford, P.A.; Hurlburt, H.E. Efficient and Accurate Bulk Parameterizations of Air–Sea Fluxes for Use in General Circulation Models. J. Atmos. Ocean. Technol. 2000, 17, 1421–1438. [Google Scholar] [CrossRef]
- Sutton, R.T.; Dong, B.; Gregory, J.M. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Stine, A.R.; Huybers, P.; Fung, I.Y. Changes in the phase of the annual cycle of surface temperature. Nature 2009, 457, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Kleidon, A.; Renner, M. An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle. Earth Syst. Dyn. 2017, 8, 849–864. [Google Scholar] [CrossRef] [Green Version]
- Martyushev, L.; Seleznev, V. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 2006, 426, 1–45. [Google Scholar] [CrossRef]
- Paltridge, G.W. The steady-state format of global climate. Q. J. R. Meteorol. Soc. 1978, 104, 927–945. [Google Scholar] [CrossRef]
- O’brien, D.M.; Stephens, G.L. Entropy and climate. II: Simple models. Q. J. R. Meteorol. Soc. 1995, 121, 1773–1796. [Google Scholar] [CrossRef]
- Herbert, C.; Paillard, D.; Kageyama, M.; Dubrulle, B. Present and Last Glacial Maximum climates as states of maximum entropy production. Q. J. R. Meteorol. Soc. 2011, 137, 1059–1069. [Google Scholar] [CrossRef] [Green Version]
- Pascale, S.; Gregory, J.M.; Ambaum, M.H.P.; Tailleux, R.; Lucarini, V. Vertical and horizontal processes in the global atmosphere and the maximum entropy production conjecture. Earth Syst. Dyn. 2012, 3, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Goody, R. Maximum Entropy Production in Climate Theory. J. Atmos. Sci. 2007, 64, 2735–2739. [Google Scholar] [CrossRef]
- Ozawa, H.; Ohmura, A.; Lorenz, R.D.; Pujol, T. The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle. Rev. Geophys. 2003, 41. [Google Scholar] [CrossRef] [Green Version]
- Kleidon, A. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 1303–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewar, R.C. Maximum Entropy Production as an Inference Algorithm that Translates Physical Assumptions into Macroscopic Predictions: Don’t Shoot the Messenger. Entropy 2009, 11, 931–944. [Google Scholar] [CrossRef]
- Shimokawa, S.; Ozawa, H. On the thermodynamics of the oceanic general circulation: Irreversible transition to a state with higher rate of entropy production. Q. J. R. Meteorol. Soc. 2002, 128, 2115–2128. [Google Scholar] [CrossRef]
- Endres, R.G. Entropy production selects nonequilibrium states in multistable systems. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Paillard, D.; Herbert, C. Maximum Entropy Production and Time Varying Problems: The Seasonal Cycle in a Conceptual Climate Model. Entropy 2013, 15, 2846–2860. [Google Scholar] [CrossRef] [Green Version]
- Mihelich, M.; Faranda, D.; Paillard, D.; Dubrulle, B. Is Turbulence a State of Maximum Energy Dissipation? Entropy 2017, 19, 154. [Google Scholar] [CrossRef]
- Sellers, W.D. A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. J. Appl. Meteorol. 1969, 8, 392–400. [Google Scholar] [CrossRef]
- Faegre, A. An Intransitive Model of the Earth-Atmosphere-Ocean System. J. Appl. Meteorol. 1972, 11, 4–6. [Google Scholar] [CrossRef]
- Oerlemans, J.; Van Den Dool, H.M. Energy Balance Climate Models: Stability Experiments with a Refined Albedo and Updated Coefficients for Infrared Emission. J. Atmos. Sci. 1978, 35, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S.L.; Schneider, S.H. A seasonal zonal energy balance climate model with an interactive lower layer. J. Geophys. Res. Ocean. 1979, 84, 2401–2414. [Google Scholar] [CrossRef]
- North, G.R.; Cahalan, R.F.; Coakley, J.A., Jr. Energy balance climate models. Rev. Geophys. 1981, 19, 91–121. [Google Scholar] [CrossRef] [Green Version]
- Basdevant, J.L. Variational Principles in Physics, 1st ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Jupp, T.E.; Cox, P.M. MEP and planetary climates: Insights from a two-box climate model containing atmospheric dynamics. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 1355–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labarre, V.; Paillard, D.; Dubrulle, B. A Maximum Entropy Production Hypothesis for Time Varying Climate Problems: Illustration on a Conceptual Model for the Seasonal Cycle. Entropy 2020, 22, 966. https://doi.org/10.3390/e22090966
Labarre V, Paillard D, Dubrulle B. A Maximum Entropy Production Hypothesis for Time Varying Climate Problems: Illustration on a Conceptual Model for the Seasonal Cycle. Entropy. 2020; 22(9):966. https://doi.org/10.3390/e22090966
Chicago/Turabian StyleLabarre, Vincent, Didier Paillard, and Bérengère Dubrulle. 2020. "A Maximum Entropy Production Hypothesis for Time Varying Climate Problems: Illustration on a Conceptual Model for the Seasonal Cycle" Entropy 22, no. 9: 966. https://doi.org/10.3390/e22090966
APA StyleLabarre, V., Paillard, D., & Dubrulle, B. (2020). A Maximum Entropy Production Hypothesis for Time Varying Climate Problems: Illustration on a Conceptual Model for the Seasonal Cycle. Entropy, 22(9), 966. https://doi.org/10.3390/e22090966