Many-Body Localization and the Emergence of Quantum Darwinism
Abstract
:1. Introduction
2. General Framework
2.1. Physical Model
2.2. Quantum Darwinism
3. Darwinism, MBL and Interactions
3.1. Localization in the Initial State
3.2. Influence of Intra-Environment Interaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press on Demand: Oxford, UK, 2002. [Google Scholar]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715. [Google Scholar] [CrossRef] [Green Version]
- Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 2005, 76, 1267. [Google Scholar] [CrossRef] [Green Version]
- Schlosshauer, M.A. Decoherence: And the Quantum-to-Classical Transition; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ollivier, H.; Poulin, D.; Zurek, W.H. Objective properties from subjective quantum states: Environment as a witness. Phys. Rev. Lett. 2004, 93, 220401. [Google Scholar] [CrossRef] [Green Version]
- Ollivier, H.; Poulin, D.; Zurek, W.H. Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Phys. Rev. A 2005, 72, 042113. [Google Scholar] [CrossRef] [Green Version]
- Blume-Kohout, R.; Zurek, W.H. A simple example of “Quantum Darwinism”: Redundant information storage in many-spin environments. Found. Phys. 2005, 35, 1857–1876. [Google Scholar] [CrossRef] [Green Version]
- Zurek, W.H. Quantum darwinism. Nat. Phys. 2009, 5, 181–188. [Google Scholar] [CrossRef]
- Paz, J.P.; Roncaglia, A.J. Redundancy of classical and quantum correlations during decoherence. Phys. Rev. A 2009, 80, 042111. [Google Scholar] [CrossRef] [Green Version]
- Brandao, F.G.; Piani, M.; Horodecki, P. Generic emergence of classical features in quantum Darwinism. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Pérez, G.; Chisholm, D.A.; Rossi, M.A.; Palma, G.M.; Maniscalco, S. Decoherence without entanglement and quantum darwinism. Phys. Rev. Res. 2020, 2, 012061. [Google Scholar] [CrossRef] [Green Version]
- Zurek, W.H. Emergence of the Classical from within the Quantum Universe. arXiv 2021, arXiv:2107.03378. [Google Scholar]
- Touil, A.; Yan, B.; Girolami, D.; Deffner, S.; Zurek, W.H. Eavesdropping on the Decohering Environment: Quantum Darwinism, Amplification, and the Origin of Objective Classical Reality. arXiv 2021, arXiv:2107.00035. [Google Scholar]
- Mirkin, N.; Wisniacki, D. Quantum chaos, equilibration, and control in extremely short spin chains. Phys. Rev. E 2021, 103, L020201. [Google Scholar] [CrossRef]
- Mirkin, N.; Wisniacki, D.; Villar, P.I.; Lombardo, F.C. Sensing quantum chaos through the non-unitary geometric phase. arXiv 2021, arXiv:2104.06367. [Google Scholar]
- Giorgi, G.L.; Galve, F.; Zambrini, R. Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 X X model. Phys. Rev. A 2015, 92, 022105. [Google Scholar] [CrossRef] [Green Version]
- Galve, F.; Zambrini, R.; Maniscalco, S. Non-markovianity hinders quantum darwinism. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Pleasance, G.; Garraway, B.M. Application of quantum Darwinism to a structured environment. Phys. Rev. A 2017, 96, 062105. [Google Scholar] [CrossRef] [Green Version]
- Milazzo, N.; Lorenzo, S.; Paternostro, M.; Palma, G.M. Role of information backflow in the emergence of quantum Darwinism. Phys. Rev. A 2019, 100, 012101. [Google Scholar] [CrossRef] [Green Version]
- Zwolak, M.; Quan, H.; Zurek, W.H. Quantum Darwinism in a mixed environment. Phys. Rev. Lett. 2009, 103, 110402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwolak, M.; Quan, H.; Zurek, W.H. Redundant imprinting of information in nonideal environments: Objective reality via a noisy channel. Phys. Rev. A 2010, 81, 062110. [Google Scholar] [CrossRef] [Green Version]
- Balanesković, N. Random unitary evolution model of quantum Darwinism with pure decoherence. Eur. Phys. J. D 2015, 69, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.; Çakmak, B.; Müstecaplıoğlu, Ö.E.; Paternostro, M.; Vacchini, B. Collisional unfolding of quantum Darwinism. Phys. Rev. A 2019, 99, 042103. [Google Scholar] [CrossRef] [Green Version]
- Ryan, E.; Paternostro, M.; Campbell, S. Quantum Darwinism in a structured spin environment. arXiv 2020, arXiv:2011.13385. [Google Scholar]
- Lorenzo, S.; Paternostro, M.; Palma, G.M. Anti-Zeno-based dynamical control of the unfolding of quantum Darwinism. Phys. Rev. Res. 2020, 2, 013164. [Google Scholar] [CrossRef] [Green Version]
- Le, T.P.; Winter, A.; Adesso, G. Thermality versus objectivity: Can they peacefully coexist? arXiv 2021, arXiv:2109.13265. [Google Scholar]
- Çakmak, B.; Müstecaplıoğlu, Ö.E.; Paternostro, M.; Vacchini, B.; Campbell, S. Quantum Darwinism in a composite system: Objectivity versus classicality. Entropy 2021, 23, 995. [Google Scholar] [CrossRef] [PubMed]
- Horodecki, R.; Korbicz, J.; Horodecki, P. Quantum origins of objectivity. Phys. Rev. A 2015, 91, 032122. [Google Scholar] [CrossRef] [Green Version]
- Lampo, A.; Tuziemski, J.; Lewenstein, M.; Korbicz, J.K. Objectivity in the non-Markovian spin-boson model. Phys. Rev. A 2017, 96, 012120. [Google Scholar] [CrossRef] [Green Version]
- Le, T.P.; Olaya-Castro, A. Objectivity (or lack thereof): Comparison between predictions of quantum Darwinism and spectrum broadcast structure. Phys. Rev. A 2018, 98, 032103. [Google Scholar] [CrossRef] [Green Version]
- Le, T.P.; Olaya-Castro, A. Strong quantum darwinism and strong independence are equivalent to spectrum broadcast structure. Phys. Rev. Lett. 2019, 122, 010403. [Google Scholar] [CrossRef] [Green Version]
- Korbicz, J. Roads to objectivity: Quantum darwinism, spectrum broadcast structures, and strong quantum darwinism. arXiv 2020, arXiv:2007.04276. [Google Scholar]
- Le, T.P.; Olaya-Castro, A. Witnessing non-objectivity in the framework of strong quantum Darwinism. Quantum Sci. Technol. 2020, 5, 045012. [Google Scholar] [CrossRef]
- Ciampini, M.A.; Pinna, G.; Mataloni, P.; Paternostro, M. Experimental signature of quantum Darwinism in photonic cluster states. Phys. Rev. A 2018, 98, 020101. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.C.; Zhong, H.S.; Li, Y.; Wu, D.; Wang, X.L.; Li, L.; Liu, N.L.; Lu, C.Y.; Pan, J.W. Emergence of classical objectivity of quantum Darwinism in a photonic quantum simulator. Sci. Bull. 2019, 64, 580–585. [Google Scholar] [CrossRef] [Green Version]
- Unden, T.K.; Louzon, D.; Zwolak, M.; Zurek, W.H.; Jelezko, F. Revealing the emergence of classicality using nitrogen-vacancy centers. Phys. Rev. Lett. 2019, 123, 140402. [Google Scholar] [CrossRef]
- Chisholm, D.A.; García-Pérez, G.; Rossi, M.A.C.; Maniscalco, S.; Palma, G.M. Witnessing Objectivity on a Quantum Computer. arXiv 2021, arXiv:2110.06243. [Google Scholar]
- Avishai, Y.; Richert, J.; Berkovits, R. Level statistics in a Heisenberg chain with random magnetic field. Phys. Rev. B 2002, 66, 052416. [Google Scholar] [CrossRef]
- Santos, L. Integrability of a disordered Heisenberg spin-1/2 chain. J. Phys. Math. Gen. 2004, 37, 4723. [Google Scholar] [CrossRef]
- Žnidarič, M.; Prosen, T.; Prelovšek, P. Many-body localization in the heisenberg x x z magnet in a random field. Phys. Rev. B 2008, 77, 064426. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Huse, D.A. Many-body localization phase transition. Phys. Rev. B 2010, 82, 174411. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.; Scardicchio, A. Ergodicity breaking in a model showing many-body localization. EPL (Europhys. Lett.) 2013, 101, 37003. [Google Scholar] [CrossRef] [Green Version]
- Luitz, D.J.; Laflorencie, N.; Alet, F. Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 2015, 91, 081103. [Google Scholar] [CrossRef] [Green Version]
- Solórzano, A.; Santos, L.F.; Torres-Herrera, E.J. Multifractality and self-averaging at the many-body localization transition. arXiv 2021, arXiv:2102.02824. [Google Scholar]
- Alet, F.; Laflorencie, N. Many-body localization: An introduction and selected topics. Comptes Rendus Phys. 2018, 19, 498–525. [Google Scholar] [CrossRef]
- Gong, M.; de Moraes Neto, G.D.; Zha, C.; Wu, Y.; Rong, H.; Ye, Y.; Li, S.; Zhu, Q.; Wang, S.; Zhao, Y.; et al. Experimental characterization of the quantum many-body localization transition. Phys. Rev. Res. 2021, 3, 033043. [Google Scholar] [CrossRef]
- Guo, Q.; Cheng, C.; Sun, Z.H.; Song, Z.; Li, H.; Wang, Z.; Ren, W.; Dong, H.; Zheng, D.; Zhang, Y.R.; et al. Observation of energy-resolved many-body localization. Nat. Phys. 2021, 17, 234–239. [Google Scholar] [CrossRef]
- Riedel, C.J.; Zurek, W.H.; Zwolak, M. The rise and fall of redundancy in decoherence and quantum Darwinism. New J. Phys. 2012, 14, 083010. [Google Scholar] [CrossRef]
- Stöckmann, H.J. Quantum Chaos: An Introduction; American Association of Physics Teachers: College Park, MD, USA, 2000. [Google Scholar]
- Kjäll, J.A.; Bardarson, J.H.; Pollmann, F. Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett. 2014, 113, 107204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Ke, Y.; Liu, W.; Lee, C. Mobility edge of Stark many-body localization. Phys. Rev. A 2021, 103, 023323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirkin, N.; Wisniacki, D.A. Many-Body Localization and the Emergence of Quantum Darwinism. Entropy 2021, 23, 1377. https://doi.org/10.3390/e23111377
Mirkin N, Wisniacki DA. Many-Body Localization and the Emergence of Quantum Darwinism. Entropy. 2021; 23(11):1377. https://doi.org/10.3390/e23111377
Chicago/Turabian StyleMirkin, Nicolás, and Diego A. Wisniacki. 2021. "Many-Body Localization and the Emergence of Quantum Darwinism" Entropy 23, no. 11: 1377. https://doi.org/10.3390/e23111377
APA StyleMirkin, N., & Wisniacki, D. A. (2021). Many-Body Localization and the Emergence of Quantum Darwinism. Entropy, 23(11), 1377. https://doi.org/10.3390/e23111377