The Tightness of Multipartite Coherence from Spectrum Estimation
Abstract
:1. Introduction
2. Theoretical Background
2.1. Review of Coherence Measures
2.2. Spectrum-Estimation-Based Method for Coherence Detection
2.3. Constructing Constraint with Stabilizer Theory
3. Detecting the Geometric Measure of Coherence with Spectrum-Estimation-Based Method
4. Tightness of Estimated Lower Bounds
5. Comparison with Other Coherence Estimation Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th anniversary ed.; Cambridge University Press: Cambridge, MA, USA; New York, NY, USA, 2010. [Google Scholar]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science 2004, 306, 1330–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in Quantum Metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Lostaglio, M.; Jennings, D.; Rudolph, T. Description of Quantum Coherence in Thermodynamic Processes Requires Constraints beyond Free Energy. Nat. Commun. 2015, 6, 6383. [Google Scholar] [CrossRef] [Green Version]
- Narasimhachar, V.; Gour, G. Low-Temperature Thermodynamics with Quantum Coherence. Nat. Commun. 2015, 6, 7689. [Google Scholar] [CrossRef] [PubMed]
- Åberg, J. Catalytic Coherence. Phys. Rev. Lett. 2014, 113, 150402. [Google Scholar] [CrossRef] [Green Version]
- Gour, G.; Müller, M.P.; Narasimhachar, V.; Spekkens, R.W.; Yunger Halpern, N. The Resource Theory of Informational Nonequilibrium in Thermodynamics. Phys. Rep. 2015, 583, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Huelga, S.F.; Plenio, M.B. Vibrations, Quanta and Biology. Contemp. Phys. 2013, 54, 181–207. [Google Scholar] [CrossRef]
- Lloyd, S. Quantum Coherence in Biological Systems. J. Phys.: Conf. Ser. 2011, 302, 012037. [Google Scholar] [CrossRef]
- Lambert, N.; Chen, Y.N.; Cheng, Y.C.; Li, C.M.; Chen, G.Y.; Nori, F. Quantum Biology. Nat. Phys. 2013, 9, 10–18. [Google Scholar] [CrossRef]
- Romero, E.; Augulis, R.; Novoderezhkin, V.I.; Ferretti, M.; Thieme, J.; Zigmantas, D.; van Grondelle, R. Quantum Coherence in Photosynthesis for Efficient Solar-Energy Conversion. Nat. Phys. 2014, 10, 676–682. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying Coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium. Rev. Mod. Phys. 2017, 89, 041003. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.L.; Hu, X.; Wang, J.; Peng, Y.; Zhang, Y.R.; Fan, H. Quantum Coherence and Geometric Quantum Discord. Phys. Rep. 2018, 762–764, 1–100. [Google Scholar] [CrossRef] [Green Version]
- Bromley, T.R.; Cianciaruso, M.; Adesso, G. Frozen Quantum Coherence. Phys. Rev. Lett. 2015, 114, 210401. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, C.; Parthasarathy, M.; Jambulingam, S.; Byrnes, T. Distribution of Quantum Coherence in Multipartite Systems. Phys. Rev. Lett. 2016, 116, 150504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streltsov, A.; Singh, U.; Dhar, H.S.; Bera, M.N.; Adesso, G. Measuring Quantum Coherence with Entanglement. Phys. Rev. Lett. 2015, 115, 020403. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Xiao, X.; Ge, L.; Sun, C.P. Quantum Coherence in Multipartite Systems. Phys. Rev. A 2015, 92, 022112. [Google Scholar] [CrossRef] [Green Version]
- Napoli, C.; Bromley, T.R.; Cianciaruso, M.; Piani, M.; Johnston, N.; Adesso, G. Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence. Phys. Rev. Lett. 2016, 116, 150502. [Google Scholar] [CrossRef] [Green Version]
- Piani, M.; Cianciaruso, M.; Bromley, T.R.; Napoli, C.; Johnston, N.; Adesso, G. Robustness of Asymmetry and Coherence of Quantum States. Phys. Rev. A 2016, 93, 042107. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Zhou, H.; Cao, Z.; Ma, X. Intrinsic Randomness as a Measure of Quantum Coherence. Phys. Rev. A 2015, 92, 022124. [Google Scholar] [CrossRef] [Green Version]
- Winter, A.; Yang, D. Operational Resource Theory of Coherence. Phys. Rev. Lett. 2016, 116, 120404. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Ma, Z.; Cao, Z.; Fei, S.M.; Vedral, V. Operational One-to-One Mapping between Coherence and Entanglement Measures. Phys. Rev. A 2017, 96, 032316. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.L.; Zhang, D.J.; Yu, X.D.; Ding, Q.M.; Liu, L. A New Coherence Measure Based on Fidelity. Quantum Inf. Process 2017, 16, 198. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Gao, T.; Yan, F. Measuring Coherence with Entanglement Concurrence. J. Phys. A Math. Theor. 2017, 50, 285301. [Google Scholar] [CrossRef]
- Shao, L.H.; Xi, Z.; Fan, H.; Li, Y. Fidelity and Trace-Norm Distances for Quantifying Coherence. Phys. Rev. A 2015, 91, 042120. [Google Scholar] [CrossRef] [Green Version]
- Chin, S. Coherence Number as a Discrete Quantum Resource. Phys. Rev. A 2017, 96, 042336. [Google Scholar] [CrossRef] [Green Version]
- Rana, S.; Parashar, P.; Lewenstein, M. Trace-Distance Measure of Coherence. Phys. Rev. A 2016, 93, 012110. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhao, Q.; Yuan, X.; Ma, X. Polynomial Measure of Coherence. New J. Phys. 2017, 19, 123033. [Google Scholar] [CrossRef]
- Xi, Z.; Yuwen, S. Coherence Measure: Logarithmic Coherence Number. Phys. Rev. A 2019, 99, 022340. [Google Scholar] [CrossRef] [Green Version]
- Xi, Z.; Yuwen, S. Epsilon-Smooth Measure of Coherence. Phys. Rev. A 2019, 99, 012308. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.D.; Liu, C.L.; Tong, D.M. Examining the Validity of Schatten-$p$-Norm-Based Functionals as Coherence Measures. Phys. Rev. A 2020, 102, 022420. [Google Scholar] [CrossRef]
- Streltsov, A.; Chitambar, E.; Rana, S.; Bera, M.N.; Winter, A.; Lewenstein, M. Entanglement and Coherence in Quantum State Merging. Phys. Rev. Lett. 2016, 116, 240405. [Google Scholar] [CrossRef] [PubMed]
- Chitambar, E.; Streltsov, A.; Rana, S.; Bera, M.N.; Adesso, G.; Lewenstein, M. Assisted Distillation of Quantum Coherence. Phys. Rev. Lett. 2016, 116, 070402. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.; Rana, S.; Bera, M.N.; Lewenstein, M. Towards Resource Theory of Coherence in Distributed Scenarios. Phys. Rev. X 2017, 7, 011024. [Google Scholar] [CrossRef]
- Styliaris, G.; Anand, N.; Campos Venuti, L.; Zanardi, P. Quantum Coherence and the Localization Transition. Phys. Rev. B 2019, 100, 224204. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Bromley, T.R.; Huang, Y.F.; Cao, H.; Lv, W.M.; Liu, B.H.; Li, C.F.; Guo, G.C.; Cianciaruso, M.; Adesso, G. Demonstrating Quantum Coherence and Metrology That Is Resilient to Transversal Noise. Phys. Rev. Lett. 2019, 123, 180504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, G.; Smolin, J.A.; Yuan, X.; Zhao, Q.; Girolami, D.; Ma, X. Quantifying Coherence and Entanglement via Simple Measurements. arXiv 2017, arXiv:1707.09928. [Google Scholar]
- Wang, Y.T.; Tang, J.S.; Wei, Z.Y.; Yu, S.; Ke, Z.J.; Xu, X.Y.; Li, C.F.; Guo, G.C. Directly Measuring the Degree of Quantum Coherence Using Interference Fringes. Phys. Rev. Lett. 2017, 118, 020403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Hou, Z.; Tang, J.F.; Streltsov, A.; Xiang, G.Y.; Li, C.F.; Guo, G.C. Direct Estimation of Quantum Coherence by Collective Measurements. Npj Quantum Inf. 2020, 6, 1–5. [Google Scholar] [CrossRef]
- Zhang, D.J.; Liu, C.L.; Yu, X.D.; Tong, D.M. Estimating Coherence Measures from Limited Experimental Data Available. Phys. Rev. Lett. 2018, 120, 170501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.D.; Gühne, O. Detecting Coherence via Spectrum Estimation. Phys. Rev. A 2019, 99, 062310. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.M.; Fang, X.X.; Yuan, X.; Zhang, T.; Lu, H. Efficient Estimation of Multipartite Quantum Coherence. Phys. Rev. Res. 2021, 3, 023228. [Google Scholar] [CrossRef]
- Dai, Y.; Dong, Y.; Xu, Z.; You, W.; Zhang, C.; Gühne, O. Experimentally Accessible Lower Bounds for Genuine Multipartite Entanglement and Coherence Measures. Phys. Rev. Appl. 2020, 13, 054022. [Google Scholar] [CrossRef]
- Mandal, S.; Narozniak, M.; Radhakrishnan, C.; Jiao, Z.Q.; Jin, X.M.; Byrnes, T. Characterizing coherence with quantum observables. Phys. Rev. Res. 2020, 2, 013157. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Zhang, Z.; Dai, Y.; Dong, Y.; Zhang, C. Detecting and Estimating Coherence Based on Coherence Witnesses. Phys. Rev. A 2021, 103, 012409. [Google Scholar] [CrossRef]
- Yu, X.D.; Zhang, D.J.; Liu, C.L.; Tong, D.M. Measure-Independent Freezing of Quantum Coherence. Phys. Rev. A 2016, 93, 060303. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Zhou, Y.; Yuan, X.; Ma, X. Operational Interpretation of Coherence in Quantum Key Distribution. Phys. Rev. A 2019, 99, 062325. [Google Scholar] [CrossRef] [Green Version]
- Bera, M.N.; Qureshi, T.; Siddiqui, M.A.; Pati, A.K. Duality of Quantum Coherence and Path Distinguishability. Phys. Rev. A 2015, 92, 012118. [Google Scholar] [CrossRef] [Green Version]
- Hillery, M. Coherence as a Resource in Decision Problems: The Deutsch-Jozsa Algorithm and a Variation. Phys. Rev. A 2016, 93, 012111. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.L.; Liu, S.Y.; Wang, X.H.; Yang, W.L.; Yang, Z.Y.; Fan, H. Coherence Depletion in the Grover Quantum Search Algorithm. Phys. Rev. A 2017, 95, 032307. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Shang, J.; Zhang, X. Coherence Depletion in Quantum Algorithms. Entropy 2019, 21, 260. [Google Scholar] [CrossRef] [Green Version]
- Takagi, R.; Regula, B.; Bu, K.; Liu, Z.W.; Adesso, G. Operational Advantage of Quantum Resources in Subchannel Discrimination. Phys. Rev. Lett. 2019, 122, 140402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiroshima, T. Majorization Criterion for Distillability of a Bipartite Quantum State. Phys. Rev. Lett. 2003, 91, 057902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, M.A.; Kempe, J. Separable States Are More Disordered Globally than Locally. Phys. Rev. Lett. 2001, 86, 5184–5187. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A. Conditions for a Class of Entanglement Transformations. Phys. Rev. Lett. 1999, 83, 436–439. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.J.; Chen, B.; Li, M.; Fei, S.M.; Long, G.L. Estimation on Geometric Measure of Quantum Coherence. Commun. Theor. Phys. 2017, 67, 166. [Google Scholar] [CrossRef]
- Briegel, H.J.; Raussendorf, R. Persistent Entanglement in Arrays of Interacting Particles. Phys. Rev. Lett. 2001, 86, 910–913. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Dai, Y.; Dong, Y.L.; Zhang, C. Numerical and Analytical Results for Geometric Measure of Coherence and Geometric Measure of Entanglement. Sci. Rep. 2020, 10, 12122. [Google Scholar] [CrossRef]
- Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2004. [Google Scholar]
- Grant, M.; Boyd, S. CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1. 2014. Available online: http://cvxr.com/cvx (accessed on 12 November 2021).
- Grant, M.; Boyd, S. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control; Blondel, V., Boyd, S., Kimura, H., Eds.; Lecture Notes in Control and Information Sciences; Springer-Verlag Limited: London, UK, 2008; pp. 95–110. Available online: https://link.springer.com/content/pdf/10.1007%2F978-1-84800-155-8.pdf (accessed on 12 November 2021).
- Kliesch, M.; Roth, I. Theory of Quantum System Certification. PRX Quantum 2021, 2, 010201. [Google Scholar] [CrossRef]
- Aaronson, S. Shadow Tomography of Quantum States. arXiv 2018, arXiv:1711.01053. [Google Scholar]
- Huang, H.Y.; Kueng, R.; Preskill, J. Predicting many properties of a quantum system from very few measurements. Nat. Phys. 2020, 16, 1050–1057. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, J.; Fang, X.X.; Zhang, X.M.; Yuan, X.; Lu, H. Experimental Quantum State Measurement with Classical Shadows. Phys. Rev. Lett. 2021, 127, 200501. [Google Scholar] [CrossRef]
- Struchalin, G.; Zagorovskii, Y.A.; Kovlakov, E.; Straupe, S.; Kulik, S. Experimental Estimation of Quantum State Properties from Classical Shadows. PRX Quantum 2021, 2, 010307. [Google Scholar] [CrossRef]
- Cotler, J.; Wilczek, F. Quantum Overlapping Tomography. Phys. Rev. Lett. 2020, 124, 100401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Coherence Measure | Method | ||||
---|---|---|---|---|---|
Tomography | 0.8755(19) | 0.9059(29) | |||
Spectrum Est. | 0.8099 | 92.51(22)% | 0.8680 | 95.81(32)% | |
Fid.-Based Est. | 0.2216(2) | 25.31(31)% | 0.2163(3) | 34.91(46)% | |
Tomography | 1.2810(47) | 1.4248(46) | |||
Spectrum Est. | 0.9393 | 73.09(37)% | 0.9420 | 66.11(32)% | |
Fid.-Based Est. | 0.9287(6) | 72.50(43)% | 0.9139(8) | 64.14(41)% | |
Tomography | 0.3571(11) | 0.3728(17) | |||
Spectrum Est. | 0.2789 | 78.10(31)% | 0.2710 | 72.69(46)% | |
Fid.-Based Est. | 0.0229(0) | 6.41(31)% | 0.0222(0) | 5.95(46)% | |
Tomography | 1.2680(50) | 1.3942(48) | |||
Spectrum Est. | 0.9393 | 73.84(39)% | 0.9420 | 67.56(34)% | |
1 | 0.4644(3) | 36.62(46)% | 0.4659(4) | 33.42(43)% | |
2 | 0.4714(3) | 37.17(46)% | 0.4684(4) | 33.60(43)% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Q.-M.; Fang, X.-X.; Lu, H. The Tightness of Multipartite Coherence from Spectrum Estimation. Entropy 2021, 23, 1519. https://doi.org/10.3390/e23111519
Ding Q-M, Fang X-X, Lu H. The Tightness of Multipartite Coherence from Spectrum Estimation. Entropy. 2021; 23(11):1519. https://doi.org/10.3390/e23111519
Chicago/Turabian StyleDing, Qi-Ming, Xiao-Xu Fang, and He Lu. 2021. "The Tightness of Multipartite Coherence from Spectrum Estimation" Entropy 23, no. 11: 1519. https://doi.org/10.3390/e23111519
APA StyleDing, Q. -M., Fang, X. -X., & Lu, H. (2021). The Tightness of Multipartite Coherence from Spectrum Estimation. Entropy, 23(11), 1519. https://doi.org/10.3390/e23111519