A Quantum Blind Multi-Signature Method for the Industrial Blockchain
Abstract
:1. Introduction
- (1)
- A quantum blockchain framework is proposed to improve the quantum resistance of blockchain. Multiple traders can implement quantum signing and verification to complete a multi-party transaction. To the best of our knowledge, this is the first time to apply quantum blind multi-signature for industrial blockchain.
- (2)
- A quantum blind multi-signature algorithm is designed to include four phases, i.e., initialization, signing, verification, and implementation. Furthermore, a blind message is employed in multi-party business to protect private information.
- (3)
- The security and computational performance against quantum attacks of the proposed method are analyzed and compared. The proposed scheme can realize absolute security and good scalability and can be directly used in lightweight and decentralized multi-party transactions of blockchain.
2. Relevant Work
3. Quantum Multi-Party Blockchain
3.1. Multi-Party Blockchain Transaction
3.2. Quantum Key Distribution in the Industrial Blockchain
4. Algorithm Design
4.1. Initialization Phase
4.2. Signing Phase
4.3. Verification Phase
4.4. Implementation Phase
4.5. Algorithm Summary
5. Performance Analysis
5.1. Security Analysis
5.2. Comparison and Discussion
- (1)
- Facing the security threaten from quantum technologies [3,4], the proposed framework can provide absolute anti-quantum security through the quantum non-cloning theorem. However, the classic anti-quantum technologies [9,10,11,12,16,17,26] can only provide probabilistic quantum resistance with complex algorithms.
- (2)
- Our proposed method, the lattice-based multi-signature scheme [16,17] and the arbitrated quantum blind dual-signature [31] model can provide multi-signature operation for multi-party transactions in a blockchain. Nevertheless, the other schemes can only provide a single signature [9,10,11,12,13,14,15,26] and the arbitrated quantum blind dual-signature [31] model is unsuitable for multi-party transactions in industrial blockchains.
- (3)
- Our proposed scheme, the classic blind signature schemes [9,26], and quantum blind signature methods [15,31] use blind operation on the transaction message, and can be used for privacy protection of multi-party transactions in a blockchain. However, other methods [10,11,12,13,14,16,17] cannot provide blind privacy protection.
- (4)
- Compared with the classic anti-quantum schemes [9,10,11,12,16,17,26] based on solving complexity and other quantum signature algorithms [13,14,15,31], our proposed method can provide both absolute anti-quantum security and good computational performance for multi-party transactions with more than two traders. When the number of traders is increasing, the computational performance and scalability of the proposed multi-signature method will not greatly deteriorate. The proposed lightweight architecture is suitable for the decentralization blockchain architecture and provides good scalability.
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, W.; Fan, Y.; Li, K.C.; Zhang, D.; Gaudiot, J.L. Secure data storage and recovery in industrial blockchain network en-vironments. IEEE Trans. Ind. Inform. 2020, 16, 6543–6552. [Google Scholar] [CrossRef]
- Li, Z.; Kang, J.; Yu, R.; Ye, D.; Deng, Q.; Zhang, Y. Consortium Blockchain for Secure Energy Trading in Industrial Internet of Things. IEEE Trans. Ind. Inf. 2017, 14, 3690–3700. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, A.K.; Kiktenko, E.; Lvovsky, A.I. Quantum computers put blockchain security at risk. Nature 2018, 563, 465–467. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Carames, T.M.; Fraga-Lamas, P. Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks. IEEE Access 2020, 8, 21091–21116. [Google Scholar] [CrossRef]
- Sun, X.; Kulicki, P.; Sopek, M. Logic Programming with Post-Quantum Cryptographic Primitives for Smart Contract on Quantum-Secured Blockchain. Entropy 2021, 23, 1120. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-L.; Chen, X.-B.; Chen, Y.-L.; Sun, Y.; Niu, X.-X.; Yang, Y.-X. A Secure Cryptocurrency Scheme Based on Post-Quantum Blockchain. IEEE Access 2018, 6, 27205–27213. [Google Scholar] [CrossRef]
- Mesnager, S.; Sınak, A.; Yayla, O. Threshold-Based Post-Quantum Secure Verifiable Multi-Secret Sharing for Distributed Storage Blockchain. Mathematics 2020, 8, 2218. [Google Scholar] [CrossRef]
- Li, C.; Xu, G.; Chen, Y.; Ahmad, H.; Li, J. A New Anti-Quantum Proxy Blind Signature for Blockchain-Enabled Internet of Things. Comput. Mater. Contin. 2019, 61, 711–726. [Google Scholar] [CrossRef]
- Di, J.; Xie, T.; Fan, S.; Jia, W.; Fu, S. An Anti-Quantum Signature Scheme Over Ideal Lattice in Blockchain. In Proceedings of the 2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), Guangzhou, China, 7–9 August 2020; pp. 218–226. [Google Scholar] [CrossRef]
- Li, C.-Y.; Chen, X.-B.; Chen, Y.-L.; Hou, Y.-Y.; Li, J. A New Lattice-Based Signature Scheme in Post-Quantum Blockchain Network. IEEE Access 2018, 7, 2026–2033. [Google Scholar] [CrossRef]
- Tianyuan, X.I.E.; Haoyu, L.I.; Yiming, Z.H.U.; Yanbin, P.A.N.; Zhen, L.I.U.; Zhaomin, Y.A.N.G. FatSeal: An efficient lattice-based signature algorithm. J. Electron. Inf. Technol. 2020, 42, 333–340. [Google Scholar]
- Tianyuan, X.I.E.; Haoyu, L.I.; Yiming, Z.H.U.; Yanbin, P.A.N.; Zhen, L.I.U.; Zhaomin, Y.A.N.G. A novel e-payment protocol implented by blockchain and quantum sig-nature. Int. J. Theor. Phys. 2019, 58, 1315–1325. [Google Scholar]
- Lou, X.; Tang, W.; Long, H.; Cheng, Y. A Quantum Blind Signature Scheme Based on Block Encryption and Quantum Fourier Transfer. Int. J. Theor. Phys. 2019, 58, 3192–3202. [Google Scholar] [CrossRef]
- Cai, Z.; Qu, J.; Liu, P.; Yu, J. A Blockchain Smart Contract Based on Light- Weighted Quantum Blind Signature. IEEE Access 2019, 7, 138657–138668. [Google Scholar] [CrossRef]
- Aitzhan, N.Z.; Svetinovic, D. Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secur. Comput. 2016, 15, 840–852. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, P.; Liu, Y. Secure and Efficient Multi-Signature Schemes for Fabric: An Enterprise Blockchain Platform. IEEE Trans. Inf. Forensics Secur. 2020, 16, 1782–1794. [Google Scholar] [CrossRef]
- Li, T.; Wang, H.; He, D.; Yu, J. Permissioned Blockchain-Based Anonymous and Traceable Aggregate Signature Scheme for Industrial Internet of Things. IEEE Internet Things J. 2020, 8, 8387–8398. [Google Scholar] [CrossRef]
- Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.Y. Blockchain-enabled smart contracts: Architecture, applications, and future trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2266–2277. [Google Scholar] [CrossRef]
- Sengupta, J.; Ruj, S.; Das Bit, S. A Comprehensive Survey on Attacks, Security Issues and Blockchain Solutions for IoT and IIoT. J. Netw. Comput. Appl. 2019, 149, 102481. [Google Scholar] [CrossRef]
- Zhu, S.; Li, W.; Li, H.; Tian, L.; Luo, G.; Cai, Z. Coin Hopping Attack in Blockchain-Based IoT. IEEE Internet Things J. 2018, 6, 4614–4626. [Google Scholar] [CrossRef]
- Iftekhar, A.; Cui, X.; Tao, Q.; Zheng, C. Hyperledger Fabric Access Control System for Internet of Things Layer in Blockchain-Based Applications. Entropy 2021, 23, 1054. [Google Scholar] [CrossRef]
- Aggarwal, D.; Brennen, G.K.; Lee, T.; Santha, M.; Tomamichel, M. Quantum attacks on Bitcoin, and how to protect against them. Ledger 2018, 3, 68–90. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.; Ilie, D.; Zamyatin, A.; Werner, S.; Torshizi, M.F.; Knottenbelt, W.J. Committing to quantum resistance: A slow defence for Bitcoin against a fast quantum computing attack. R. Soc. Open Sci. 2018, 5, 180410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chehelcheshmeh, S.B.; Hosseinzadeh, M. Quantum-resistance authentication in centralized cognitive radio networks. Secur. Commun. Netw. 2016, 9, 1158–1172. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Tan, Y.-A.; Zhu, L.; Wang, X.; Zhang, Q.; Li, Y. An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks. Sensors 2018, 18, 1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persichetti, E.; Steinwandt, R.; Suárez Corona, A. From Key Encapsulation to Authenticated Group Key Establishment—A Compiler for Post-Quantum Primitives. Entropy 2019, 21, 1183. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Lara-Avila, S.; Kim, K.H.; Fletcher, N.; Rozhko, S.; Bergsten, T.; Eklund, G.; Cedergren, K.; Yakimova, R.; Park, Y.W.; et al. Polymer-encapsulated molecular doped epigraphene for quantum resistance metrology. Metrologia 2019, 56, 045004. [Google Scholar] [CrossRef]
- Suhail, S.; Hussain, R.; Khan, A.; Hong, C.S. On the Role of Hash-Based Signatures in Quantum-Safe Internet of Things: Current Solutions and Future Directions. IEEE Internet Things J. 2020, 8, 1–17. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, Y.; Wu, M.; Cai, D. An Entropy-Robust Optimization of Mobile Commerce System Based on Multi-agent System. Arab. J. Sci. Eng. 2015, 41, 3703–3715. [Google Scholar] [CrossRef]
- Sun, H.-W.; Zhang, L.; Zuo, H.-J.; Zhang, K.-J.; Ma, C.-G. Offline Arbitrated Quantum Blind Dual-Signature Protocol with Better Performance in Resisting Existential Forgery Attack. Int. J. Theor. Phys. 2018, 57, 2695–2708. [Google Scholar] [CrossRef]
- Ferrer-Gomila, J.-L.; Hinarejos, M. A Multi-Party Contract Signing Solution Based on Blockchain. Electronics 2021, 10, 1457. [Google Scholar] [CrossRef]
The Measurement Results of Trader A | Transformation of Trader B/Block Creator C |
---|---|
Model | QIR Attacks | QMITM Attacks | Blind Message | Number of Signatures | Signature Complexity | Verification Complexity |
---|---|---|---|---|---|---|
Lattice-based signature [10,11,12] | Probabilistic | Probabilistic | No | 1 | ||
Lattice-based blind signature [9,26] | Probabilistic | Probabilistic | Blind | 1 | ||
Lattice-based multi-signature [16,17] | Probabilistic | Probabilistic | No | ≥2 | ||
Quantum signature [13] | Non-cloning | Non-cloning | No | 1 | ||
Quantum Fourier transfer [14] | Non-cloning | Non-cloning | Blind | 1 | ||
Quantum blind signature [15] | Non-cloning | Non-cloning | Blind | 1 | ||
Quantum blind dual-signature [31] | Non-cloning | Non-cloning | Blind | 2 | ||
Our proposed method | Non-cloning | Non-cloning | Blind | ≥2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Liu, S.; Han, Z.; Wang, R.; Huang, Y. A Quantum Blind Multi-Signature Method for the Industrial Blockchain. Entropy 2021, 23, 1520. https://doi.org/10.3390/e23111520
Cai Z, Liu S, Han Z, Wang R, Huang Y. A Quantum Blind Multi-Signature Method for the Industrial Blockchain. Entropy. 2021; 23(11):1520. https://doi.org/10.3390/e23111520
Chicago/Turabian StyleCai, Zhengying, Shi Liu, Zhangyi Han, Rui Wang, and Yuehua Huang. 2021. "A Quantum Blind Multi-Signature Method for the Industrial Blockchain" Entropy 23, no. 11: 1520. https://doi.org/10.3390/e23111520
APA StyleCai, Z., Liu, S., Han, Z., Wang, R., & Huang, Y. (2021). A Quantum Blind Multi-Signature Method for the Industrial Blockchain. Entropy, 23(11), 1520. https://doi.org/10.3390/e23111520