Dynamic Analyses of Contagion Risk and Module Evolution on the SSE A-Shares Market Based on Minimum Information Entropy
Abstract
:1. Introduction
2. Literature Review
3. Methodologies
3.1. LASSO Estimation and Network Construction
3.2. Module Detection Based on the Information Entropy Methods
3.3. Network Topological Indicators
- Average shortest path length, where i and j are two stocks (nodes) in the SSE A network and is the shortest path between nodes i and j. A smaller length means faster information or risk transmission in the network.
- Clustering coefficient, where is the number of nodes directly connecting to node i and is the number of edges between neighbours of node i. A higher value implies better network connectivity.
- Network diameter. A smaller value implies faster information or risk transmission speed.
- Network density, where is defined in Equation (3). A higher density implies a closer relationships between nodes.
- Relative degree centrality. The high relative degree centrality implies an important influence from the corresponding node on the network.
- Relative betweenness centrality, where is the number of shortest paths connecting nodes j and k and passing through node i. This indicator measures the “bridge” role of node i in the network.
- Relative closeness centrality that measures how close node i is to all other nodes in the network. The high value of relative closeness centrality implies close connections between node i and other nodes.
- Degree centralisation>, where the numerator is the sum of differences between the maximum degree centrality and the degree centrality of each node , and the denominator is the maximum value of the numerator in theories. This indicator describes the centrality of the whole network.
- Betweenness centralisation, where the numerator theoretically represents the sum of the difference between the maximum intermediate centrality and the intermediate centrality of each node, and the denominator represents the maximum of the sum of the differences. This indicator describes the degree to which the network relies excessively on a node to transfer relations.
- Closeness centralisation, which describes the centralised trend in the network.
4. Empirical Results
4.1. Stock Market Data
- Missing values. Until 18 December 2019, 1547 stocks were traded on the SSE A-shares market. Due to the late listing and suspension of trading, some of these stocks were removed in advance to compare stock market networks in different stages.
- Stocks prefixed with “ST” or “*ST”. Designated as Special Treatment (ST) by the stock exchanges for warning investors, these stocks face delisting risks and show distinct patterns from normal stocks.
- Stocks whose returns maintain at zeros over a long period for the long-term suspension or other reasons were excluded in this paper to prevent misleading information.
4.2. Module Analysis of the SSE A-Shares Network Based on the Minimum Entropy
4.3. Topological Properties of SSE A-Shares Networks
4.4. Analysis of Core Stocks in Bull and Bear Markets
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SSE | Shanghai Stock Exchange |
RQFII | Renminbi Qualified Foreign Institutional Investor |
QFII | Qualified Foreign Institutional Investor |
QDII | Qualified Domestic Institutional Investor |
LASSO | Least Absolute Shrinkage and Selection Operator |
Appendix A
Appendix B
References
- Darby, J.; Zhang, H.; Zhang, J. Institutional trading in volatile markets: Evidence from Chinese stock markets. Pac. Basin Financ. J. 2021, 65, 101484. [Google Scholar] [CrossRef]
- Ding, H.; Jin, Y.; Koedijk, K.G.; Wang, Y. Valuation effect of capital account liberalization: Evidence from the Chinese stock market. J. Int. Money Financ. 2020, 107, 102208. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, W.; Yeh, C.Y. Turnover premia in China’s stock markets. Pac. Basin Financ. J. 2021, 65, 101487. [Google Scholar] [CrossRef]
- Liu, X.; Wei, S.J.; Zhou, Y. A Liberalization Spillover: From Equities to Loans. Natl. Bur. Econ. Res. 2020. [Google Scholar] [CrossRef]
- Jiang, T.; Bao, S.; Li, L. The linear and nonlinear lead-lag relationship among three SSE 50 Index markets: The index futures, 50ETF spot and options markets. Phys. Stat. Mech. Appl. 2019, 525, 878–893. [Google Scholar] [CrossRef]
- Wu, B. The Global Stock Network Connected and Resonance Effect Based on the Time-zone VAR Model with LASSO. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Yu, D.; Huang, D.; Chen, L. Stock Return Predictability and Cyclical Movements in Valuation Ratios. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Billio, M.; Getmansky, M.; Lo, A.W.; Pelizzon, L. Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J. Financ. Econ. 2012, 104, 535–559. [Google Scholar] [CrossRef]
- Engle, R. Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. J. Bus. Econ. Stat. 2002, 20, 339–350. [Google Scholar] [CrossRef]
- Brownlees, C.T.; Engle, R.F. Volatility, Correlation and Tails for Systemic Risk Measurement. SSRN Electron. J. 2011. [Google Scholar] [CrossRef] [Green Version]
- Acemoglu, D.; Ozdaglar, A.; Tahbaz-Salehi, A. Systemic risk and stability in financial networks. Am. Econ. Rev. 2015, 105, 564–608. [Google Scholar] [CrossRef]
- Acharya, V.; Engle, R.; Richardson, M. Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks. Am. Econ. Rev. 2012, 102, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Diebold, F.X.; Yilmaz, K. Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets. Econ. J. 2008, 119, 158–171. [Google Scholar] [CrossRef] [Green Version]
- Diebold, F.X.; Yilmaz, K. On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms. J. Econom. 2011, 182, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Wu, B.; Tian, T.; Zhang, H. Development of Stock Networks Using Part Mutual Information and Australian Stock Market Data. Entropy 2020, 22, 773. [Google Scholar] [CrossRef]
- Girardi, G.; Ergün, A.T. Systemic risk measurement: Multivariate GARCH estimation of CoVaR. J. Bank. Financ. 2013, 37, 3169–3180. [Google Scholar] [CrossRef]
- Hautsch, N.; Schaumburg, J.; Schienle, M. Financial Network Systemic Risk Contributions. Rev. Financ. 2015, 19, 685–738. [Google Scholar] [CrossRef] [Green Version]
- Kyrtsou, C.; Mikropoulou, C.D.; Papana, A. Exploitation of Information as a Trading Characteristic: A Causality-Based Analysis of Simulated and Financial Data. Entropy 2020, 22, 1139. [Google Scholar] [CrossRef]
- Adeloye, D.; Basquill, C.; Papana, A.; Chan, K.Y.; Rudan, I.; Campbell, H. An estimate of the prevalence of COPD in Africa: A systematic analysis. COPD J. Chronic Obstr. Pulm. Dis. 2015, 12, 71–81. [Google Scholar] [CrossRef]
- Adeloye, D.; Chua, S.; Lee, C.; Basquill, C.; Papana, A.; Theodoratou, E.; Nair, H.; Gasevic, D.; Sridhar, D.; Campbell, H.; et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J. Glob. Health 2015, 5, 20415. [Google Scholar] [CrossRef]
- Papana, A.; Kyrtsou, C.; Kugiumtzis, D.; Diks, C. Simulation Study of Direct Causality Measures in Multivariate Time Series. Entropy 2013, 15, 2635–2661. [Google Scholar] [CrossRef] [Green Version]
- Rudan, I.; Sidhu, S.; Papana, A.; Meng, S.; Xin-Wei, Y.; Wang, W.; Campbell-Page, R.M.; Demaio, A.R.; Nair, H.; Sridhar, D.; et al. Prevalence of rheumatoid arthritis in low- and middle-income countries: A systematic review and analysis. J. Glob. Health 2015, 5, 10409. [Google Scholar]
- Naoui, K.N.; Liouane, N.; Brahim, S. A dynamic conditional correlation analysis of financial contagion: The case of the subprime credit crisis. Int. J. Econ. Financ. 2010, 2, 85. [Google Scholar] [CrossRef] [Green Version]
- Grout, P.A.; Zalewska, A. Stock market risk in the financial crisis. Int. Rev. Financ. Anal. 2016, 46, 326–345. [Google Scholar] [CrossRef] [Green Version]
- Bernal, O.; Gnabo, J.Y.; Guilmin, G. Assessing the Contribution of Banks, Insurance and Other Financial Services to Systemic Risk. J. Bank. Financ. 2014, 47, 270–287. [Google Scholar] [CrossRef]
- Das, S.; Demirer, R.; Gupta, R.; Mangisa, S. The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis. Struct. Chang. Econ. Dyn. 2019, 50, 132–147. [Google Scholar] [CrossRef]
- Battiston, S.; Gatti, D.D.; Gallegati, M.; Greenwald, B.C.; Stiglitz, J.E. Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. J. Econ. Dyn. Control 2012, 36, 1121–1141. [Google Scholar] [CrossRef] [Green Version]
- Bisias, D.; Flood, M.; Lo, A.W.; Valavanis, S. A Survey of Systemic Risk Analytics. Rev. Financ. Econ. 2012, 4, 255–296. [Google Scholar]
- Huang, X.; Zhou, H.; Zhu, H. A framework for assessing the systemic risk of major financial institutions. J. Bank. Financ. 2009, 33, 2036–2049. [Google Scholar] [CrossRef] [Green Version]
- Kritzman, M.; Li, Y.; Page, S.; Rigobon, R. Principal Components as a Measure of Systemic Risk. J. Portf. Manag. 2011, 37, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.F.; Tse, C.K. A complex network perspective of world stock markets: Synchronization and volatility. Int. J. Bifurc. Chaos 2012, 22, 1250142. [Google Scholar] [CrossRef]
- Gong, C.; Tang, P.; Wang, Y. Measuring the network connectedness of global stock markets. Phys. Stat. Mech. Appl. 2019, 535, 122351. [Google Scholar] [CrossRef]
- Chen, L.; Han, Q.; Qiao, Z.; Stanley, H.E. Correlation analysis and systemic risk measurement of regional, financial and global stock indices. Phys. Stat. Mech. Appl. 2020, 542, 122653. [Google Scholar] [CrossRef]
- Coquidé, C.; Lages, J.; Shepelyansky, D.L. Crisis contagion in the world trade network. Appl. Netw. Sci. 2020, 5, 67. [Google Scholar] [CrossRef]
- Lee, T.K.; Cho, J.H.; Kwon, D.S.; Sohn, S.Y. Global stock market investment strategies based on financial network indicators using machine learning techniques. Expert Syst. Appl. 2019, 117, 228–242. [Google Scholar] [CrossRef]
- Liu, A.; Paddrik, M.E.; Yang, S.Y.; Zhang, X. Interbank contagion: An agent-based model approach to endogenously formed networks. J. Bank. Financ. 2017, 112, 105191. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Deo, N. Correlation and network analysis of global financial indices. Phys. Rev. E 2012, 86, 26101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; An, H.; Fang, W.; Wang, Y.; Zhong, W.; Yan, L. Global energy investment structure from the energy stock market perspective based on a Heterogeneous Complex Network Model. Appl. Energy 2017, 194, 648–657. [Google Scholar] [CrossRef]
- Paltalidis, N.; Gounopoulos, D.; Kizys, R.; Koutelidakis, Y. Transmission channels of systemic risk and contagion in the European financial network. J. Bank. Financ. 2015, 61, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Coquidé, C.; Ermann, L.; Lages, J.; Shepelyansky, D.L. Influence of petroleum and gas trade on EU economies from the reduced Google matrix analysis of UN COMTRADE data. Eur. Phys. J. B 2019, 92, 171. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Hu, S.; Chen, L.; Lin, R.; Zhang, W.; Shi, R. A new investor sentiment index model and its application in stock price prediction and systematic risk estimation of bull and bear Market. Int. J. Financ. Bank. Res. 2019, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Wen, F.; Yang, X.; Zhou, W. Tail dependence networks of global stock markets. Int. J. Financ. Econ. 2019, 24, 558–567. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Shangguan, W.; Liu, Y.; Wang, S. Can network structure predict cross-sectional stock returns? Evidence from co-attention networks in China. Financ. Res. Lett. 2021, 38, 101422. [Google Scholar] [CrossRef]
- Wang, X.; Hui, X. Cross-sectoral information transfer in the Chinese stock market around its crash in 2015. Entropy 2018, 20, 663. [Google Scholar] [CrossRef] [Green Version]
- Khoojine, A.S.; Han, D. Network analysis of the Chinese stock market during the turbulence of 2015–2016 using log-returns, volumes and mutual information. Phys. Stat. Mech. Appl. 2019, 523, 1091–1109. [Google Scholar] [CrossRef]
- Xu, Q.; Li, M.; Jiang, C.; He, Y. Interconnectedness and systemic risk network of Chinese financial institutions: A LASSO-CoVaR approach. Phys. Stat. Mech. Appl. 2019, 534, 122173. [Google Scholar] [CrossRef]
- Demirer, M.; Diebold, F.X.; Liu, L.; Yilmaz, K. Estimating global bank network connectedness. J. Appl. Econom. 2018, 33, 1–15. [Google Scholar] [CrossRef]
- Rosvall, M.; Bergstrom, C.T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA 2007, 104, 7327–7331. [Google Scholar] [CrossRef] [Green Version]
- Rosvall, M.; Bergstrom, C.T. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 2008, 105, 1118–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosvall, M.; Axelsson, D.; Bergstrom, C.T. The map equation. Eur. Phys. J. Spec. Top. 2009, 178, 13–23. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, H. Map equation for link communities. Phys. Rev. E 2011, 84, 26110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bech, M.L.; Bergstrom, C.T.; Rosvall, M.; Garratt, R.J. Mapping change in the overnight money market. Phys. Stat. Mech. Appl. 2015, 424, 44–51. [Google Scholar] [CrossRef]
- Chan-Lau, J.A. Systemic centrality and systemic communities in financial networks. Quant. Financ. Econ. 2018, 2, 468–496. [Google Scholar] [CrossRef]
- Garratt, R.J.; Mahadeva, L.; Svirydzenka, K. The great entanglement: The contagious capacity of the international banking network just before the 2008 crisis. J. Bank. Financ. 2014, 49, 367–385. [Google Scholar] [CrossRef]
- Bosma, J.J.; Koetter, M.; Wedow, M. Too connected to fail? Inferring network ties from price co-movements. J. Bus. Econ. Stat. 2019, 37, 67–80. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L.; Johnstone, I.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994, 81, 425–455. [Google Scholar] [CrossRef]
Eight Stages | Code | Start Time | End Time | Reasons |
---|---|---|---|---|
Stage 1 | Bull 1 | Jun. 2005 | Oct. 2007 | Reforms in the market and other capital dividends. |
Stage 2 | Bear 1 | Oct. 2007 | Oct. 2008 | The subprime mortgage crisis and other external factors. |
Stage 3 | Bull 2 | Oct. 2008 | Jul. 2009 | Rescue policies from the government. |
Stage 4 | Bear 1 | Jul. 2009 | Mar. 2014 | Combined influences from the crisis and stimulus policies |
result in market ups and downs. | ||||
Stage 5 | Bull 3 | Mar. 2014 | Jun. 2015 | Deepen reforms of state-owned enterprises and arising |
financial leverages increase the market. | ||||
Stage 6 | Bear 3 | Jun. 2015 | Jan. 2016 | Deleveraging and other factors cause the collapse of |
the stock market. | ||||
Stage 7 | Bull 4 | Jan. 2016 | Jan. 2018 | The slight rise in the market due to factors like stable leverage |
and financial stimulus. | ||||
Stage 8 | Bear 4 | Jan. 2018 | Dec. 2018 | Overseas factors like the trade war leads to the fluctuating |
decline in the stock market. |
Module Name | M1 | M2 | M3 | M4 | M5 | M6 |
---|---|---|---|---|---|---|
Materials | 102 | 6 | 0 | 6 | 1 | 0 |
Telecommunication service | 2 | 0 | 0 | 0 | 0 | 0 |
Real estate | 27 | 6 | 21 | 3 | 1 | 0 |
Industrials | 146 | 7 | 7 | 4 | 1 | 0 |
Utilities | 38 | 0 | 1 | 2 | 0 | 0 |
Finance | 13 | 1 | 2 | 0 | 0 | 4 |
Consumer staples | 107 | 12 | 1 | 1 | 0 | 0 |
Energy | 20 | 1 | 1 | 1 | 1 | 0 |
Consumer discretionary | 54 | 2 | 0 | 0 | 0 | 0 |
Information technology | 45 | 4 | 0 | 2 | 0 | 0 |
Health care | 55 | 5 | 0 | 0 | 0 | 0 |
Module Name | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 |
---|---|---|---|---|---|---|---|---|---|
Materials | 2 | 1 | 8 | 2 | 1 | 3 | 2 | 25 | 1 |
Real estate | 1 | 0 | 1 | 1 | 4 | 1 | 2 | 0 | 29 |
Industrials | 1 | 2 | 5 | 21 | 14 | 7 | 7 | 2 | 1 |
Utilities | 2 | 1 | 8 | 6 | 4 | 1 | 0 | 0 | 4 |
Finance | 0 | 0 | 1 | 6 | 0 | 2 | 1 | 0 | 0 |
Consumer staples | 5 | 4 | 2 | 1 | 1 | 3 | 11 | 5 | 3 |
Energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Consumer discretionary | 0 | 14 | 4 | 1 | 1 | 2 | 2 | 4 | 0 |
Information technology | 1 | 3 | 1 | 0 | 2 | 10 | 0 | 0 | 0 |
Health care | 28 | 8 | 0 | 1 | 2 | 1 | 2 | 0 | 0 |
Module Name | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 |
---|---|---|---|---|---|---|---|---|---|
Materials | 15 | 3 | 1 | 1 | 1 | 18 | 5 | 0 | 1 |
Telecommunication service | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
Real estate | 9 | 0 | 1 | 2 | 1 | 5 | 9 | 0 | 2 |
Industrials | 22 | 4 | 19 | 16 | 4 | 3 | 7 | 4 | 7 |
Utilities | 8 | 0 | 0 | 0 | 1 | 0 | 6 | 1 | 0 |
Finance | 1 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 0 |
Consumer staples | 20 | 10 | 3 | 1 | 18 | 2 | 1 | 10 | 0 |
Energy | 3 | 0 | 0 | 0 | 1 | 8 | 0 | 0 | 0 |
Consumer discretionary | 3 | 15 | 1 | 0 | 5 | 0 | 1 | 0 | 2 |
Information technology | 7 | 0 | 27 | 1 | 2 | 1 | 1 | 1 | 0 |
Bull 1 | Bear 1 | ||||
---|---|---|---|---|---|
Module Name | Node Numbers | Link Numbers | Module Name | Node Numbers | Link Numbers |
M1 | 488 | 9637 | M1 | 608 | 10,887 |
M2 | 86 | 688 | M2 | 44 | 307 |
M3 | 61 | 468 | M3 | 33 | 224 |
M4 | 26 | 161 | M4 | 19 | 49 |
M5 | 11 | 33 | M5 | 4 | 8 |
Bull 2 | Bear 2 | ||||
Module Name | Node Numbers | Link Numbers | Module Name | Node Numbers | Link Numbers |
M1 | 528 | 11,755 | M1 | 612 | 14,331 |
M2 | 47 | 329 | M2 | 52 | 802 |
M3 | 51 | 797 | M3 | 15 | 50 |
M4 | 43 | 533 | M4 | 8 | 18 |
M5 | 20 | 166 | M5 | 10 | 23 |
Bull 3 | Bear 3 | ||||
Module Name | Node Numbers | Link Numbers | Module Name | Node Numbers | Link Numbers |
M1 | 53 | 231 | M1 | 306 | 3750 |
M2 | 47 | 264 | M2 | 119 | 1147 |
M3 | 31 | 119 | M3 | 70 | 500 |
M4 | 27 | 119 | M4 | 72 | 503 |
M5 | 27 | 123 | M5 | 69 | 504 |
Bull 4 | Bear 4 | ||||
Module Name | Node Numbers | Link Numbers | Module Name | Node Numbers | Link Numbers |
M1 | 40 | 256 | M1 | 95 | 668 |
M2 | 33 | 211 | M2 | 68 | 476 |
M3 | 30 | 122 | M3 | 52 | 328 |
M4 | 39 | 201 | M4 | 22 | 61 |
M5 | 29 | 108 | M5 | 36 | 126 |
Bull 1 | Bear 1 | ||||||
---|---|---|---|---|---|---|---|
Module Name | Within Modules | Flow in Modules | Flow out Modules | Module Name | Within Modules | Flow in Modules | Flow out Modules |
M1 | 66.13% | 8.58% | 10.82% | M1 | 85.87% | 5.29% | 5.94% |
M2 | 13.32% | 6.00% | 5.41% | M2 | 6.80% | 3.14% | 2.75% |
M3 | 10.91% | 3.38% | 2.29% | M3 | 4.65% | 2.60% | 2.47% |
M4 | 3.57% | 1.99% | 1.87% | M4 | 1.89% | 1.22% | 1.10% |
M5 | 2.03% | 1.32% | 1.14% | M5 | 0.58% | 0.45% | 0.41% |
Bull 2 | Bear 2 | ||||||
Module Name | Within Modules | Flow in Modules | Flow out Modules | Module Name | Within Modules | Flow in Modules | Flow out Modules |
M1 | 71.35% | 9.17% | 10.60% | M1 | 82.16% | 6.24% | 7.36% |
M2 | 11.49% | 4.95% | 3.57% | M2 | 6.92% | 2.90% | 3.11% |
M3 | 6.82% | 2.85% | 3.08% | M3 | 3.91% | 2.40% | 1.83% |
M4 | 5.04% | 2.43% | 2.56% | M4 | 2.13% | 1.40% | 1.14% |
M5 | 1.92% | 1.11% | 1.23% | M5 | 2.01% | 1.29% | 1.05% |
Bull 3 | Bear 3 | ||||||
Module Name | Within Modules | Flow in Modules | Flow out Modules | Module Name | Within Modules | Flow in Modules | Flow out Modules |
M1 | 8.34% | 5.05% | 5.08% | M1 | 46.54% | 11.75% | 11.49% |
M2 | 6.58% | 3.81% | 3.95% | M2 | 18.76% | 8.26% | 8.20% |
M3 | 4.59% | 3.18% | 3.30% | M3 | 10.13% | 5.21% | 5.08% |
M4 | 4.41% | 2.85% | 2.85% | M4 | 8.70% | 4.27% | 4.31% |
M5 | 3.15% | 1.87% | 1.98% | M5 | 7.09% | 3.17% | 3.43% |
Bull 4 | Bear 4 | ||||||
Module Name | Within Modules | Flow in Modules | Flow out Modules | Module Name | Within Modules | Flow in Modules | Flow out Modules |
M1 | 7.45% | 4.30% | 4.43% | M1 | 13.18% | 7.55% | 8.91% |
M2 | 6.46% | 2.60% | 2.17% | M2 | 12.64% | 4.35% | 3.85% |
M3 | 5.49% | 3.72% | 3.71% | M3 | 7.57% | 3.72% | 3.83% |
M4 | 4.47% | 2.45% | 2.63% | M4 | 4.91% | 3.02% | 2.58% |
M5 | 4.28% | 2.71% | 2.77% | M5 | 4.53% | 2.21% | 2.05% |
Topological Properties | Bull 1 | Bear 1 | Bull 2 | Bear 1 |
---|---|---|---|---|
Network diameter | 7 | 6 | 6 | 7 |
Network density | 0.0195 | 0.0252 | 0.02 | 0.0342 |
The average shortest path length | 2.72 | 2.7 | 2.85 | 2.59 |
Clustering coefficient | 0.071 | 0.078 | 0.055 | 0.097 |
Mean of relative degree centrality | 0.02 | 0.0252 | 0.02 | 0.0342 |
Mean of relative betweenness centrality | 0.23 | 0.234 | 0.255 | 0.22 |
Mean of relative closeness centrality | 0.3815 | 0.3909 | 0.3699 | 0.4138 |
Out-degree centralisation | 0.11404 | 0.05463 | 0.04857 | 0.11844 |
In-degree centralisation | 0.03841 | 0.13446 | 0.11719 | 0.06242 |
Betweenness centralisation | 0.012 | 0.0167 | 0.0308 | 0.0162 |
Out-degree closeness centralisation | 0.2976 | 0.1937 | 0.1891 | 0.275 |
In-degree closeness centralisation | 0.1742 | 0.345 | 0.336 | 0.1831 |
Topological Properties | Bull 3 | Bear 3 | Bull 4 | Bear 4 |
---|---|---|---|---|
Network diameter | 8 | 6 | 6 | 8 |
Network density | 0.0165 | 0.022 | 0.0193 | 0.0157 |
The average shortest path length | 3.1 | 2.84 | 3.08 | 3.23 |
Clustering coefficient | 0.066 | 0.076 | 0.084 | 0.075 |
Mean of relative degree centrality | 0.0165 | 0.022 | 0.0193 | 0.0157 |
Mean of relative betweenness centrality | 0.28 | 0.255 | 0.278 | 0.296 |
Mean of relative closeness centrality | 0.3326 | 0.3748 | 0.3389 | 0.3209 |
Out-degree centralisation | 0.09127 | 0.01859 | 0.15156 | 0.07114 |
In-degree centralisation | 0.04645 | 0.09201 | 0.06052 | 0.05434 |
Betweenness centralisation | 0.0361 | 0.0172 | 0.0448 | 0.025 |
Out-degree closeness centralisation | 0.2952 | 0.083 | 0.4127 | 0.2957 |
In-degree closeness centralisation | 0.2062 | 0.2378 | 0.2306 | 0.2169 |
Bull 1 | Bear 1 | ||
---|---|---|---|
Stock code | Industry category | Stock code | Industry category |
600624 | Health care | 600340 | Real estate |
600218 | Industrials | 600085 | Health care |
600373 | Consumer discretionary | 600088 | Consumer discretionary |
600172 | Materials | 600006 | Consumer discretionary |
600626 | Consumer discretionary | 600590 | Industrials |
Bull 2 | Bear 2 | ||
Stock code | Industry category | Stock code | Industry category |
600405 | Industrials | 600370 | Consumer discretionary |
600967 | Industrials | 600853 | Industrials |
600665 | Real estate | 600522 | Information technology |
600692 | Real estate | 600590 | Industrials |
600601 | Industrials | 600360 | Information technology |
Bull 3 | Bear 3 | ||
Stock code | Industry category | Stock code | Industry category |
600460 | Information technology | 600410 | Information technology |
600439 | Consumer staples | 600502 | Industrials |
660360 | Information technology | 600271 | Information technology |
600131 | Utilities | 600749 | Consumer discretionary |
600345 | Information technology | 600531 | Materials |
Bull 4 | Bear 4 | ||
Stock code | Industry category | Stock code | Industry category |
600229 | Consumer discretionary | 600168 | Utilities |
600561 | Industrials | 600331 | Materials |
600356 | Materials | 600292 | Industrials |
600757 | Consumer discretionary | 600713 | Health care |
600422 | Health care | 600269 | Industrials |
Bull 1 | Bear 1 | ||
---|---|---|---|
Stock code | Industry category | Stock code | Industry category |
600373 | Consumer discretionary | 600798 | Industrials |
600353 | Information technology | 600088 | Consumer discretionary |
600624 | Health care | 600811 | Consumer staples |
600138 | Consumer discretionary | 600736 | Real estate |
600426 | Materials | 600565 | Real estate |
Bull 2 | Bear 2 | ||
Stock code | Industry category | Stock code | Industry category |
600692 | Real estate | 600480 | Consumer discretionary |
600967 | Industrials | 600131 | Utilities |
600665 | Real estate | 600370 | Consumer discretionary |
600229 | Consumer discretionary | 600585 | Materials |
600662 | Industrials | 600004 | Industrials |
Bull 3 | Bear 3 | ||
Stock code | Industry category | Stock code | Industry category |
600131 | Utilities | 600719 | Utilities |
600439 | Consumer staples | 600410 | Information technology |
600460 | Information technology | 600533 | Real estate |
600166 | Consumer discretionary | 600502 | Industrials |
600879 | Industrials | 600501 | Industrials |
Bull 4 | Bear 4 | ||
Stock code | Industry category | Stock code | Industry category |
600135 | Materials | 600331 | Materials |
600561 | Industrials | 600594 | Health care |
600422 | Health care | 600713 | Health care |
600757 | Consumer discretionary | 600375 | Industrials |
600730 | Consumer discretionary | 600390 | Finance |
Bull 1 | Bear 1 | ||
---|---|---|---|
Stock code | Industry category | Stock code | Industry category |
600624 | Health care | 600085 | Health care |
600172 | Materials | 600790 | Real estate |
600983 | Consumer discretionary | 600006 | Consumer discretionary |
600373 | Consumer discretionary | 600811 | Consumer staples |
600985 | Energy | 600590 | Industrials |
Bull 2 | Bear 2 | ||
Stock code | Industry category | Stock code | Industry category |
600405 | Industrials | 600370 | Consumer discretionary |
600967 | Industrials | 600522 | Information technology |
600692 | Real estate | 600853 | Industrials |
600665 | Real estate | 600480 | Consumer discretionary |
600787 | Industrials | 600861 | Consumer staples |
Bull 3 | Bear 3 | ||
Stock code | Industry category | Stock code | Industry category |
600439 | Consumer staples | 600410 | Information technology |
600460 | Information technology | 600749 | Consumer discretionary |
600131 | Utilities | 600502 | Industrials |
600345 | Information technology | 600271 | Information technology |
600166 | Consumer discretionary | 600661 | Consumer discretionary |
Bull 4 | Bear 4 | ||
Stock code | Industry category | Stock code | Industry category |
600229 | Consumer discretionary | 600331 | Materials |
600561 | Industrials | 600168 | Utilities |
600218 | Industrials | 600713 | Health care |
600757 | Consumer discretionary | 600292 | Industrials |
600422 | Health care | 600320 | Industrials |
Bull 1 | Bear 1 | ||
---|---|---|---|
Stock code | Industry category | Stock code | Industry category |
600984 | Industrials | 600340 | Financials |
600426 | Materials 1 | 600088 | Consumer discretionary |
600312 | Industrials | 600739 | Industrials |
600517 | Industrials | 600085 | Health care |
600313 | Industrials | 600681 | Utilities |
Stock code | Industry category | Stock code | Industry category |
600405 | Industrials | 600733 | Consumer discretionary |
600967 | Industrials | 600083 | Consumer discretionary |
600665 | Financials | 600585 | Materials |
600208 | Financials | 600860 | Industrials |
600692 | Financials | 600175 | Energy |
Bull 3 | Bear 3 | ||
Stock code | Industry category | Stock code | Industry category |
600879 | Industrials | 600410 | Information technology |
600458 | Materials | 600749 | Consumer discretionary |
600131 | Information technology | 600502 | Industrials |
600746 | Materials | 600271 | Information technology |
600439 | Consumer staples | 600490 | Materials |
Bull 4 | Bear 4 | ||
Stock code | Industry category | Stock code | Industry category |
600135 | Consumer discretionary | 600961 | Materials |
600843 | Industrials | 600351 | Health care |
600056 | Health care | 600438 | Consumer staples |
600439 | Consumer staples | 600233 | Industrials |
600571 | Information technology | 600594 | Health care |
Bull 1 | Bear 1 | ||
---|---|---|---|
Stock code | Industry category | Stock code | Industry category |
600624 | Health care | 600006 | Consumer discretionary |
600218 | Industrials | 600126 | Materials |
600626 | Industrials | 600418 | Consumer discretionary |
600567 | Materials | 600866 | Consumer staples |
600237 | Information technology | 600976 | Health Care |
Bull 2 | Bear 2 | ||
Stock code | Industry category | Stock code | Industry category |
600020 | Industrials | 600219 | Materials |
600601 | Information technology | 600808 | Materials |
600308 | Materials | 600362 | Materials |
600814 | Consumer discretionary | 600308 | Materials |
600360 | Information technology | 600853 | Industrials |
Bull 3 | Bear 3 | ||
Stock code | Industry category | Stock code | Industry category |
600460 | Information technology | 600099 | Consumer discretionary |
600360 | Information technology | 600643 | Financials |
600345 | Telecommunication services | 600763 | Health Care |
600166 | Consumer discretionary | 600809 | Consumer staples |
600216 | Health care | 600167 | Utilities |
Bull 4 | Bear 4 | ||
Stock code | Industry category | Stock code | Industry category |
600229 | Consumer discretionary | 600168 | Utilities |
600561 | Industrials | 600713 | Health Care |
600356 | Materials | 600292 | Industrials |
600218 | Industrials | 600269 | Industrials |
600327 | Consumer discretionary | 600353 | Information technology |
Period | Current Ratio | Quick Ratio | Debt to Asset Ratio | Total Assets Turnover Ratio | Return on Equity | Margin Trading Balance |
---|---|---|---|---|---|---|
Bull 1 | 1.42 (1.38) | 1.02 (1.43) | 59.33 (43.03) | 0.69 (0.81) | 15.26 (6.05) | - (-) |
Bear 1 | 1.42 (1.22) | 0.98 (0.71) | 60.09 (55.94) | 0.78 (0.78) | 11 (11.23) | - (-) |
Bull 2 | 1.45 (1.55) | 0.92 (0.85) | 62.47 (44.29) | 0.79 (0.86) | 5.30 (7.40) | - (-) |
Bear 1 | 1.71 (1.08) | 1.14 (1.51) | 58.95 (47.17) | 0.79 (0.60) | 10.18 (3.30) | 1.25 (0.48) |
Bull 3 | 1.65 (1.81) | 1.26 (1.03) | 54.93 (43.48) | 0.77 (0.57) | 10.86 (5.98) | 5.14 (2.31) |
Bear 3 | 1.94 (1.83) | 1.48 (1.41) | 49.28 (55.78) | 0.71 (0.54) | −0.07 (−4.09) | 6.52 (6.64) |
Bull 4 | 1.95 (2.54) | 1.48 (2.16) | 49.84 (43.20) | 0.64 (0.71) | 6.82 (4.57) | 4.76 (4.00) |
Bear 4 | 1.95 (1.66) | 1.50 (1.28) | 50.13 (48.31) | 0.66 (0.76) | −11.39 (−3.98) | 4.34 (3.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Wang, Y.; Wu, B.; Huang, D. Dynamic Analyses of Contagion Risk and Module Evolution on the SSE A-Shares Market Based on Minimum Information Entropy. Entropy 2021, 23, 434. https://doi.org/10.3390/e23040434
Chen M, Wang Y, Wu B, Huang D. Dynamic Analyses of Contagion Risk and Module Evolution on the SSE A-Shares Market Based on Minimum Information Entropy. Entropy. 2021; 23(4):434. https://doi.org/10.3390/e23040434
Chicago/Turabian StyleChen, Muzi, Yuhang Wang, Boyao Wu, and Difang Huang. 2021. "Dynamic Analyses of Contagion Risk and Module Evolution on the SSE A-Shares Market Based on Minimum Information Entropy" Entropy 23, no. 4: 434. https://doi.org/10.3390/e23040434
APA StyleChen, M., Wang, Y., Wu, B., & Huang, D. (2021). Dynamic Analyses of Contagion Risk and Module Evolution on the SSE A-Shares Market Based on Minimum Information Entropy. Entropy, 23(4), 434. https://doi.org/10.3390/e23040434