Some Integral Inequalities Involving Metrics
Abstract
:1. Introduction
- if and only if ;
- ;
- .
2. Some Definitions
- , , .
- , .
- , .
- , .
- , .
- , .
3. Results and Proofs
- (H1)
- is continuous.
- (H2)
- .
3.1. The Case: ω Is Sub-Additive
3.2. The Case: ω Is Convex
3.3. The Case: ω Is log-Convex
3.4. The Case: ω Is σ-Lipschitzian
3.5. The Case:
4. Applications to Partial Metrics
- if and only if ;
- ;
- ;
- .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cichocki, A.; Cruces, S.; Amari, S.I. Log-Determinant Divergences Revisited: Alpha-Beta and Gamma Log-Det Divergences. Entropy 2015, 17, 2988–3034. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Lu, M.; Liu, G.; Pan, Z. A Novel Distance Metric: Generalized Relative Entropy. Entropy 2017, 19, 269. [Google Scholar] [CrossRef] [Green Version]
- Reeb, D.; Kastoryano, M.J.; Wolf, M.M. Hilbert’s projective metric in quantum information theory. J. Math. Phys. 2011, 52, 082201. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A.H.; Kumam, P.; Samet, B. A fixed point problem with constraint inequalities via an implicit contraction. J. Fixed Point Theory Appl. 2017, 19, 1145–1163. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A fixed point problem under two constraint inequalities. Fixed Point Theory Appl. 2016, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mitrovic, Z.D.; Aydi, H.; Noorani, M.S.; Qawaqneh, H. The weight inequalities on Reich type theorem in b-metric spaces. J. Math. Comput. Sci. 2019, 19, 51–57. [Google Scholar] [CrossRef]
- Simić, S.; Radenović, S. A functional inequality. J. Math. Anal. Appl. 1996, 117, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256. [Google Scholar] [CrossRef] [PubMed]
- Gromov, M. Metric inequalities with scalar curvature. Geom. Funct. Anal. 2018, 28, 645–726. [Google Scholar] [CrossRef] [Green Version]
- Lángi, Z. On the perimeters of simple polygons contained in a disk. Monatsh. Math. 2011, 162, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Witsenhausen, H.S. Metric inequalities and the zonoid problem. Proc. Am. Math. Soc. 1973, 40, 517–520. [Google Scholar] [CrossRef]
- Mattia, S. Solving survivable two-layer network design problems by metric inequalities. Comput. Optim. Appl. 2012, 51, 809–834. [Google Scholar] [CrossRef] [Green Version]
- Mattia, S. The robust network loading problem with dynamic routing. Comp. Opt. Appl. 2013, 54, 619–643. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Gosa, A.C. An inequality in metric spaces. J. Indones. Math. Soc. 2005, 11, 33–38. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Fixed Point Theory for Lipschitzian-Type Mappings with Applications; Topological Fixed Point Theory and Its Applications; Springer: New York, NY, USA, 2009; Volume 6. [Google Scholar]
- Karapinar, E.; Noorwali, M. Dragomir and Gosa type inequalities on b-metric spaces. J. Inequal. Appl. 2019, 2019, 29. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Samet, B. On some metric inequalities and applications. J. Funct. Space 2020, 2020, 3842879. [Google Scholar] [CrossRef]
- Dragomir, S.S. Refined inequalities for the distance in metric spaces. Prepr. RGMIA Res. Rep. Coll. 2020, 23, 119. [Google Scholar]
- Dragomir, S.S. Inequalities for the forward distance in metric spaces. Repr. RGMIA Res. Rep. Coll. 2020, 23, 122. [Google Scholar]
- Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Mathematics in Science and Engineering; Academic Press: Boston, MA, USA, 1992; Volume 187. [Google Scholar]
- Vetro, C.; Vetro, F. Common fixed points of mappings satisfying implicit relations in partial metric spaces. J. Nonlinear Sci. Appl. 2013, 6, 152–161. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Jleli, M.; Samet, B. Some Integral Inequalities Involving Metrics. Entropy 2021, 23, 871. https://doi.org/10.3390/e23070871
Agarwal RP, Jleli M, Samet B. Some Integral Inequalities Involving Metrics. Entropy. 2021; 23(7):871. https://doi.org/10.3390/e23070871
Chicago/Turabian StyleAgarwal, Ravi P., Mohamed Jleli, and Bessem Samet. 2021. "Some Integral Inequalities Involving Metrics" Entropy 23, no. 7: 871. https://doi.org/10.3390/e23070871
APA StyleAgarwal, R. P., Jleli, M., & Samet, B. (2021). Some Integral Inequalities Involving Metrics. Entropy, 23(7), 871. https://doi.org/10.3390/e23070871