Transfer Entropy Granger Causality between News Indices and Stock Markets in U.S. and Latin America during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Rolling Updates on Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen (accessed on 31 July 2020).
- Albulescu, C.T. COVID-19 and the United States Financial Markets’ Volatility. Financ. Res. Lett. 2021, 38, 101699. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.B.; Mahi, M.; Hassan, M.K.; Bhuiyan, A.B. Impact of COVID-19 Pandemic on Stock Markets: Conventional vs. Islamic Indices Using Wavelet-Based Multi-Timescales Analysis. N. Am. J. Econ. Financ. 2021, 58, 101504. [Google Scholar] [CrossRef]
- Shehzad, K.; Xiaoxing, L.; Bilgili, F.; Koçak, E. COVID-19 and Spillover Effect of Global Economic Crisis on the United States’ Financial Stability. Front. Psychol. 2021, 12, 632175. [Google Scholar] [CrossRef] [PubMed]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The Socio-Economic Implications of the Coronavirus Pandemic (COVID-19): A Review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- Wei, S.-J. Ten Keys to Beating Back COVID-19 and the Associated Economic Pandemic. In Mitigating the COVID Economic Crisis: Act Fast and Do Whatever It Takes; Baldwin, R., Weder di Mauro, B., Eds.; CEPR Press: London, UK, 2020; pp. 71–76. ISBN 978-1-912179-29-9. [Google Scholar]
- Topcu, M.; Gulal, O.S. The Impact of COVID-19 on Emerging Stock Markets. Financ. Res. Lett. 2020, 36, 101691. [Google Scholar] [CrossRef]
- Umar, Z.; Gubareva, M.; Teplova, T. The Impact of Covid-19 on Commodity Markets Volatility: Analyzing Time-Frequency Relations between Commodity Prices and Coronavirus Panic Levels. Resour. Policy 2021, 73, 102164. [Google Scholar] [CrossRef]
- Burdekin, R.C.K.; Harrison, S. Relative Stock Market Performance during the Coronavirus Pandemic: Virus vs. Policy Fffects in 80 Countries. J. Risk Financ. Manag. 2021, 14, 177. [Google Scholar] [CrossRef]
- Corbet, S.; Hou, Y.; Hu, Y.; Lucey, B.; Oxley, L. Aye Corona! The Contagion Effects of Being Named Corona during the COVID-19 Pandemic. Financ. Res. Lett. 2021, 38, 101591. [Google Scholar] [CrossRef]
- Shaikh, I. On the Relation between the Crude Oil Market and Pandemic COVID-19. Eur. J. Manag. Bus. Econ. 2021, 30, 331–356. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Kost, K.; Sammon, M.; Viratyosin, T. The Unprecedented Stock Market Impact of Covid-19; National Bureau of Economic Research: Cambridge, UK, 2020. [Google Scholar]
- Gupta, R.; Subramaniam, S.; Bouri, E.; Ji, Q. Infectious Disease-Related Uncertainty and the Safe-Haven Characteristic of US Treasury Securities. Int. Rev. Econ. Financ. 2021, 71, 289–298. [Google Scholar] [CrossRef]
- Bouri, E.; Demirer, R.; Gupta, R.; Pierdzioch, C. Infectious Diseases, Market Uncertainty and Oil Market Volatility. Energies 2020, 13, 4090. [Google Scholar] [CrossRef]
- Romero-Meza, R.; Coronado, S.; Ibañez-Veizaga, F. COVID-19 y Causalidad En La Volatilidad Del Mercado Accionario Chileno. Estud. Gerenc. 2021, 37, 242–250. [Google Scholar] [CrossRef]
- Shang, Y.; Chen, X.; Zhang, Y.; Wei, Y. The Impacts of the Infectious Disease Epidemic on the Permanent Volatility of Precious Metal and Crude Oil Futures Markets: A Long-Term Perspective. Discrete Dyn. Nat. Soc. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Akhtaruzzaman, M.; Boubaker, S.; Umar, Z. COVID-19 Media Coverage and ESG Leader Indices. Financ. Res. Lett. 2021, 45, 102170. [Google Scholar] [CrossRef]
- Baig, A.S.; Butt, H.A.; Haroon, O.; Rizvi, S.A.R. Deaths, Panic, Lockdowns and US Equity Markets: The Case of COVID-19 Pandemic. Financ. Res. Lett. 2021, 38, 101701. [Google Scholar] [CrossRef]
- Cepoi, C.O. Asymmetric Dependence between Stock Market Returns and News during COVID-19 Financial Turmoil. Financ. Res. Lett. 2020, 36, 101658. [Google Scholar] [CrossRef] [PubMed]
- Salisu, A.A.; Ogbonna, A.E.; Oloko, T.F.; Adediran, I.A. A New Index for Measuring Uncertainty Due to the COVID-19 Pandemic. Sustainability 2021, 13, 3212. [Google Scholar] [CrossRef]
- Narayan, P.K.; Iyke, B.N.; Sharma, S.S. New Measures of the COVID-19 Pandemic: A New Time-Series Dataset. Asian Econ. Lett. 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Polanco Martínez, J.M.; Abadie, L.M.; Fernández-Macho, J. A Multi-Resolution and Multivariate Analysis of the Dynamic Relationships between Crude Oil and Petroleum-Product Prices. Appl. Energy 2018, 228, 1550–1560. [Google Scholar] [CrossRef]
- Ferreira, P.; Almeida, D.; Dionísio, A.; Bouri, E.; Quintino, D. Energy Markets—Who Are the Influencers? Energy 2022, 239, 121962. [Google Scholar] [CrossRef]
- Gao, A.; Sun, M.; Han, D.; Shen, C. Multiresolution Analysis of Information Flows from International Carbon Trading Market to the Clean Energy Stock Market. J. Renew. Sustain. Energy 2020, 12, 055901. [Google Scholar] [CrossRef]
- Tweneboah, G. Dynamic Interdependence of Industrial Metal Price Returns: Evidence from Wavelet Multiple Correlations. Phys. A Stat. Mech. Its Appl. 2019, 527, 121153. [Google Scholar] [CrossRef]
- Liu, C. COVID-19 and the Energy Stock Market: Evidence from China. Energy Res. Lett. 2021, 2, 1–5. [Google Scholar] [CrossRef]
- Baek, J. Does COVID-19 Play Any Role in the Asymmetric Relationship between Oil Prices and Exchange Rates? Evidence from South Korea. Econ. Anal. Policy 2022, 74, 553–559. [Google Scholar] [CrossRef]
- Bolzan, M.J.A.; Guarnieri, F.L.; Vieira, P.C. Comparisons between Two Wavelet Functions in Extracting Coherent Structures from Solar Wind Time Series. Braz. J. Phys. 2009, 39, 14–17. [Google Scholar] [CrossRef]
- Buchanan, M. Cause and Correlation. Nat. Phys. 2012, 8, 852. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.; Deyle, E.; Fogarty, M.; Munch, S. Detecting Causality in Complex Ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef]
- Diks, C.; Fang, H. A Consistent Nonparametric Test for Granger Non-Causality Based on the Transfer Entropy. Entropy 2020, 22, 1123. [Google Scholar] [CrossRef]
- Siggiridou, E.; Koutlis, C.; Tsimpiris, A.; Kugiumtzis, D. Evaluation of Granger Causality Measures for Constructing Networks from Multivariate Time Series. Entropy 2019, 21, 1080. [Google Scholar] [CrossRef] [Green Version]
- Caserini, N.A.; Pagnottoni, P. Effective Transfer Entropy to Measure Information Flows in Credit Markets. Stat. Methods Appl. 2021, 31, 729–757. [Google Scholar] [CrossRef]
- Gençağa, D. Transfer Entropy. Entropy 2018, 20, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuhud, D.A.Z.; Musa, M.H.; Ismail, M.; Bahaludin, H.; Razak, F.A. The Causality and Uncertainty of the COVID-19 Pandemic to Bursa Malaysia Financial Services Index’s Constituents. Entropy 2022, 24, 1100. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Perez, A.; Gilbert, A.; Indriawan, I.; Nguyen, N.H. COVID-19 Pandemic and Stock Market Response: A Culture Effect. J. Behav. Exp. Financ. 2021, 29, 100454. [Google Scholar] [CrossRef] [PubMed]
- Naseem, S.; Mohsin, M.; Hui, W.; Liyan, G.; Penglai, K. The Investor Psychology and Stock Market Behavior During the Initial Era of COVID-19: A Study of China, Japan, and the United States. Front. Psychol. 2021, 12, 626934. [Google Scholar] [CrossRef]
- Dong, H.; Gil-Bazo, J.; Ratiu, R.V. Information Demand during the COVID-19 Pandemic. J. Account. Public Policy 2021, 40, 106917. [Google Scholar] [CrossRef]
- Coronado, S.; Rojas, O.; Romero-Meza, R.; Venegas-Martínez, F. Un Estudio de Comovimientos Entre Las Bolsas de Valores de Estados Unidos de Norteamérica y América Latina: Una Perspectiva de La Bicorrelación Cruzada. DYNA 2016, 83, 143–148. [Google Scholar] [CrossRef]
- de Pinho Nogueira Freitas, A.; Minardi, A.M.A.F. The Impact of Credit Rating Changes in Latin American Stock Markets. BAR Braz. Adm. Rev. 2013, 10, 439–461. [Google Scholar] [CrossRef] [Green Version]
- Vatsa, P.; Basnet, H.; Mixon, F. Stock Market Co-Movement in Latin America and the US: Evidence from a New Approach. J. Financ. Econ. Policy 2022, 14, 162–171. [Google Scholar] [CrossRef]
- Polanco-Martínez, J.M.; Abadie, L.M. Analyzing Crude Oil Spot Price Dynamics versus Long Term Future Prices: A Wavelet Analysis Approach. Energies 2016, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Gencay, R.; Selcuk, F.; Whitcher, B. An Introduction to Wavelets and Other Filtering Methods in Finance and Economics; Elsevier: Orlando, FL, USA, 2002; ISBN 9780122796708. [Google Scholar]
- Rehman, M.U. Dynamic Correlation Pattern amongst Alternative Energy Market for Diversification Opportunities. J. Econ. Struct. 2020, 9, 1–24. [Google Scholar] [CrossRef]
- Polanco-Martínez, J.M. Dynamic Relationship Analysis between NAFTA Stock Markets Using Nonlinear, Nonparametric, Non-Stationary Methods. Nonlinear Dyn. 2019, 97, 369–389. [Google Scholar] [CrossRef]
- Otoakhia, E.I. Inflations and Its Uncertainty in Some ECOWAS Member States: Transfer Entropy Approach. Cent. Bank Niger. J. Appl. Stat. 2022, 12, 87–124. [Google Scholar] [CrossRef]
- Polanco-Martínez, J.M.; Fernández-Macho, J.; Neumann, M.B.; Faria, S.H. A Pre-Crisis vs. Crisis Analysis of Peripheral EU Stock Markets by Means of Wavelet Transform and a Nonlinear Causality Test. Phys. A Stat. Mech. Its Appl. 2018, 490, 1211–1227. [Google Scholar] [CrossRef]
- Diks, C.; Panchenko, V. A New Statistic and Practical Guidelines for Nonparametric Granger Causality Testing. J. Econ. Dyn. Control 2006, 30, 1647–1669. [Google Scholar] [CrossRef] [Green Version]
- Salisu, A.A.; Akanni, L.O. Constructing a Global Fear Index for the COVID-19 Pandemic. Emerg. Mark. Financ. Trade 2020, 56, 2310–2331. [Google Scholar] [CrossRef]
- Rojas, O.; Trejo-Pech, O. Stylized Facts for the Mexican Stock Exchange Index Compared to Developed Markets. In Nonlinear Time Series and Finance; Coronado, S., Celso-Arellano, P., Trejo-Pech, O., Eds.; Universidad de Gudalajara: Gudalajara, Mexico, 2014; pp. 228–245. [Google Scholar]
- Jarque, C.M.; Bera, A.K. Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals. Econ. Lett. 1980, 6, 255–259. [Google Scholar] [CrossRef]
- Im, K.S.; Lee, J.; Tieslau, M.A. More Powerful Unit Root Tests with Non-Normal Errors. In Festschrift in Honor of Peter Schmidt; Springer: New York, NY, USA, 2014; pp. 315–342. [Google Scholar]
- Brock, W.A.; Hsieh, D.A.; LeBaron, B.D. Nonlinear Dynamics, Chaos, and Instability; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Ganie, I.R.; Wani, T.A.; Yadav, M.P. Impact of COVID-19 Outbreak on the Stock Market: An Evidence from Select Economies. Bus. Perspect. Res. 2022, 227853372110736. [Google Scholar] [CrossRef]
- Khan, N. Emerging Market Indexes during the Pandemic Period; Brock University: St. Catherines, ON, Canada, 2022. [Google Scholar]
- Evans, K.P. Intraday Jumps and US Macroeconomic News Announcements. J. Bank. Financ. 2011, 35, 2511–2527. [Google Scholar] [CrossRef]
- Jawadi, F.; Louhichi, W.; ben Ameur, H.; Ftiti, Z. Do Jumps and Co-Jumps Improve Volatility Forecasting of Oil and Currency Markets? Energy J. 2019, 40, SI2. [Google Scholar] [CrossRef]
Group | Variable | Mean | Median | Min | Max | Variance | Standard Deviation | Skewness | Kurtosis | Jarque–Bera | RALS | BDS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | RCI | −0.09 | −0.33 | −132.15 | 183.71 | 306.17 | 17.50 | 1.36 | 44.02 | 31,000 | −9.24 | 9.62 |
RDI | −0.03 | −0.18 | −146.03 | 121.87 | 179.75 | 13.41 | −1.35 | 58.10 | 57,000 | −19.99 | 13.00 | |
GFI | −0.06 | −0.36 | −125.11 | 166.35 | 157.13 | 12.54 | 2.72 | 94.48 | 160,000 | −6.40 | 8.88 | |
EMV–ID | 0.35 | −3.22 | −275.86 | 294.28 | 3625.80 | 60.21 | 0.02 | 5.59 | 125 | −11.11 | 7.50 | |
SP | 0.01 | 0.03 | −2.22 | 1.59 | 0.11 | 0.33 | −1.60 | 16.34 | 3504 | −6.23 | 13.00 | |
MEXBOL | 0.01 | 0.00 | −1.27 | 0.91 | 0.06 | 0.25 | −0.55 | 6.22 | 216 | −6.44 | 10.49 | |
COLCAP | 0.01 | 0.00 | −3.85 | 7.28 | 0.38 | 0.62 | 2.94 | 55.28 | 52,000 | −12.22 | 9.68 | |
BOVESPA | 0.00 | 0.02 | −2.49 | 1.37 | 0.10 | 0.32 | −2.03 | 19.04 | 5096 | −8.15 | 13.26 | |
IGBVL | 0.01 | 0.01 | −31.72 | 32.03 | 4.67 | 2.16 | 0.20 | 212.77 | 820,000 | −35.46 | 5.74 | |
IPSA | 0.00 | 0.00 | −65.55 | 67.28 | 20.02 | 4.47 | 0.57 | 218.52 | 870,000 | −61.48 | 5.74 | |
MERVAL | 0.02 | 0.02 | −15.36 | 15.19 | 1.35 | 1.16 | −0.36 | 135.20 | 330,000 | −13.56 | 6.53 | |
Group 2 | ciustk.news | −0.02 | −0.11 | −123.23 | 103.48 | 555.26 | 23.56 | 0.11 | 6.54 | 260 | −26.19 | 6.31 |
ciustk.mac | −2.02 | 1.13 | −333.53 | 86.65 | 779.07 | 27.91 | −10.22 | 121.51 | 300,000 | −2.72 | 14.86 | |
ciustk.com | −0.06 | 0.28 | −89.10 | 181.80 | 172.09 | 13.12 | 3.18 | 91.74 | 160,000 | −11.46 | 11.34 | |
EMV–ID | −0.05 | −2.97 | −275.86 | 294.28 | 4192.56 | 64.75 | −0.06 | 5.29 | 109 | −12.22 | 8.76 | |
SP | 0.01 | 0.04 | −3.94 | 2.71 | 0.15 | 0.38 | −3.50 | 44.56 | 37,000 | −5.21 | 13.26 | |
MEXBOL | 0.01 | 0.01 | −2.54 | 1.80 | 0.05 | 0.23 | −2.19 | 40.78 | 30,000 | −7.88 | 11.49 | |
COLCAP | 0.01 | 0.00 | −3.85 | 5.30 | 0.32 | 0.56 | 0.89 | 32.56 | 18,000 | −13.44 | 9.34 | |
BOVESPA | 0.00 | 0.02 | −2.46 | 1.79 | 0.10 | 0.32 | −1.74 | 20.08 | 6277 | −10.79 | 13.31 | |
IGBVL | 0.01 | 0.01 | −31.74 | 32.04 | 4.21 | 2.05 | 0.20 | 235.87 | 1,100,000 | −37.05 | 6.05 | |
IPSA | 0.00 | 0.00 | −65.57 | 67.29 | 18.06 | 4.25 | 0.60 | 242.02 | 1,200,000 | −63.21 | 6.05 | |
MERVAL | 0.02 | 0.02 | −15.36 | 15.19 | 1.31 | 1.15 | −0.81 | 131.46 | 340,000 | −14.33 | 6.96 | |
Group 3 | A–COVID Index | 0.27 | 0.05 | −133.93 | 148.16 | 533.49 | 23.10 | 0.38 | 22.30 | 5346 | −9.97 | 8.09 |
Medical Index | 0.21 | 0.27 | −216.02 | 225.05 | 695.63 | 26.37 | 0.41 | 39.30 | 19,000 | −38.55 | 7.96 | |
Travel Index | −0.06 | −0.45 | −317.50 | 297.07 | 2868.68 | 53.56 | 0.05 | 12.54 | 1303 | −11.29 | 8.04 | |
Uncertainty Index | −0.04 | −0.67 | −106.08 | 120.38 | 428.86 | 20.71 | 0.40 | 9.54 | 623 | −8.67 | 8.71 | |
vaccine index | 0.29 | 0.34 | −398.84 | 412.21 | 4462.45 | 66.80 | 0.21 | 15.12 | 2107 | −14.15 | 8.43 | |
COVID Index | 0.13 | 0.05 | −539.44 | 549.61 | 2850.90 | 53.39 | 0.28 | 78.95 | 83,000 | −16.15 | 7.78 | |
EMV–ID | 3.91 | −2.01 | −275.86 | 294.28 | 3060.36 | 55.32 | 0.21 | 6.48 | 176 | −7.45 | 3.34 | |
SP | 0.02 | 0.04 | −2.19 | 1.57 | 0.13 | 0.36 | −1.40 | 13.74 | 1765 | −5.22 | 11.41 | |
MEXBOL | 0.01 | 0.00 | −1.27 | 1.30 | 0.08 | 0.28 | −0.23 | 6.22 | 152 | −7.40 | 9.62 | |
COLCAP | 0.00 | 0.00 | −3.85 | 7.22 | 0.47 | 0.68 | 2.79 | 47.51 | 29,000 | −11.14 | 8.40 | |
BOVESPA | 0.01 | 0.03 | −2.49 | 1.68 | 0.13 | 0.36 | −1.59 | 16.54 | 2772 | −7.69 | 11.87 | |
IGBVL | 0.00 | 0.01 | −31.74 | 32.04 | 6.04 | 2.46 | 0.18 | 166.03 | 380,000 | −40.88 | 5.02 | |
IPSA | 0.01 | 0.01 | −65.55 | 67.28 | 25.98 | 5.10 | 0.50 | 168.74 | 390,000 | −57.32 | 5.02 | |
MERVAL | 0.01 | 0.01 | −14.41 | 14.41 | 1.50 | 1.23 | −0.09 | 111.93 | 170,000 | −12.06 | 3.15 |
RCI→MEXBOL | 2.32 *** | ciustk.news→BOVESPA | 5.66 *** | A-COVID Index→MERVAL | 3.70 *** |
RCI→SP | 2.27 ** | ciustk.news→COLCAP | 4.85 *** | A-COVID Index→IPSA | 4.01 *** |
RCI→BOVESPA | 2.55 ** | ciustk.news→SP | 6.31 *** | A-COVID index→IGBVL | 5.15 *** |
RCI→IGBVL | 2.17 ** | ciustk.mac→BOVESPA | 2.32 ** | A-COVID index→BOVESPA | 4.93 *** |
RCI→COLCAP | 2.58 ** | ciustk.com→BOVESPA | 4.41 *** | A-COVID index→SP | 3.39 *** |
RCI→IPSA | 2.29 ** | EMV-ID→MEXBOL | 5.84 *** | Medical index→BOVESPA | 3.78 *** |
RDI→MERVAL | 2.09 ** | Travel index→BOVESPA | 1.61 * | ||
RDI→IGBVL | 0.90 | Uncertainty index→MERVAL | 3.14 *** | ||
RDI→IPSA | 1.21 | Uncertainty index→IGBVL | 6.03 *** | ||
RDI→COLCAP | 2.11 ** | Uncertainty index→BOVESPA | 6.00 *** | ||
GFI→COLCAP | 1.95 * | Uncertainty index→SP | 4.64 *** | ||
GFI→IPSA | 1.90 * | COVID index→BOVESPA | 4.12 *** | ||
EMV-ID→SP | 4.63 *** | COVID index→SP | 6.46 *** | ||
EMV-ID→BOVESPA | 3.55 *** | EMV-ID→COLCAP | 5.70 *** | ||
EMV-ID→MEXBOL | 4.64 *** | EMV-ID→SP | 4.95 *** | ||
EMV-ID→COLCAP | 2.19 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronado, S.; Martinez, J.N.; Gualajara, V.; Rojas, O. Transfer Entropy Granger Causality between News Indices and Stock Markets in U.S. and Latin America during the COVID-19 Pandemic. Entropy 2022, 24, 1420. https://doi.org/10.3390/e24101420
Coronado S, Martinez JN, Gualajara V, Rojas O. Transfer Entropy Granger Causality between News Indices and Stock Markets in U.S. and Latin America during the COVID-19 Pandemic. Entropy. 2022; 24(10):1420. https://doi.org/10.3390/e24101420
Chicago/Turabian StyleCoronado, Semei, Jose N. Martinez, Victor Gualajara, and Omar Rojas. 2022. "Transfer Entropy Granger Causality between News Indices and Stock Markets in U.S. and Latin America during the COVID-19 Pandemic" Entropy 24, no. 10: 1420. https://doi.org/10.3390/e24101420
APA StyleCoronado, S., Martinez, J. N., Gualajara, V., & Rojas, O. (2022). Transfer Entropy Granger Causality between News Indices and Stock Markets in U.S. and Latin America during the COVID-19 Pandemic. Entropy, 24(10), 1420. https://doi.org/10.3390/e24101420