Information Flow in Biological Networks for Color Vision
Abstract
:1. Introduction
2. Statistical Interpretation of Building Blocks of Color Vision
3. Materials and Methods
3.1. Colorimetrically Calibrated Database
3.2. Quantification of the Information Flow
3.3. Total Correlation, Mutual Information, and Kullback–Leibler Divergence from Gaussianization
4. Experiments and Results
- Physiological networks: Cascades of physiologically meaningful linear + nonlinear layers:
- (i)
- (ii)
- Psychophysical networks: Standard color appearance models that are made of the same ingredients, including
- (i)
- The classical CIE Lab model [40],
- (ii)
- (iii)
4.1. Visualization of the Color Manifolds
4.2. Quantification of the Information Flow
- The differential entropy, h, depends on arbitrary changes of scale (or units) of the response. It can be even negative for PDFs of small support (chapt. 17 in [31]). Thus, for fair comparison, all h values in Table 2 were computed after linearly re-scaling the signals to be inscribed in the same 3D cube of size S. As such, the h values do describe how uniform the distributions are in the common support (in our case, we chose S = 10). As a useful reference, the upper bound for h is achieved by the uniform distribution, which is bits.
- As stated in Section 3.2, the information shared by the noiseless input, , and the negligible-noise input, , is a convenient reference because other (more noisy) layers will share less information with . Assuming, as indicated in Section 3.2, that noise in LMS with 0.05% deviation is negligible, the empirical RBIG computation of on natural colors in LMS gives bits. The values of I in Table 3 should be compared to that upper bound.
- In Table 4, lower divergences indicate a better match between the color compensated sets, so the optimal value would be .
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Gutmann, M.U.; Laparra, V.; Hyvärinen, A.; Malo, J. Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images. PLoS ONE 2014, 9, e86481. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Taubman, D.S.; Marcellin, M.W. JPEG 2000: Image Compression Fundamentals, Standards and Practice; Kluwer Academic Publishers: Norwell, MA, USA, 2001. [Google Scholar]
- Gutierrez, J.; Camps, G.; Luque, M.; Malo, J. A Color Contrast Definition for Perceptually Based Color Image Coding. Recent Patents Sign. Proc. 2012, 2, 33–55. [Google Scholar]
- Barlow, H. Sensory mechanisms, the reduction of redundancy, and intelligence. In Proceedings of the National Physics Laboratory Symposium on the Mechanization of Thought Process, London, UK, 24–27 November 1958; pp. 535–539. [Google Scholar]
- Barlow, H. Redundancy reduction revisited. Netw. Comp. Neur. Syst. 2001, 12, 241–253. [Google Scholar] [CrossRef]
- Buchsbaum, G.; Gottschalk, A. Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc. Roy. Soc. Lond. B Biol. Sci. 1983, 220, 89–113. [Google Scholar]
- Atick, J.; Li, Z.; Redlich, A. Understanding Retinal Color Coding from First Principles. Neural Comput. 1992, 4, 559–572. [Google Scholar] [CrossRef]
- Li, Q.; Gomez-Villa, A.; Bertalmío, M.; Malo, J. Contrast sensitivity functions in autoencoders. J. Vis. 2022, 22, 8. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, D.; von der Twer, T. The pleistochrome: Optimal opponent codes for natural colors. In Color Perception: From Light to Object; Heyer, D., Mausfeld, R., Eds.; Oxford Univ. Press: Oxford, UK, 2003. [Google Scholar]
- Laparra, V.; Jiménez, S.; Camps-Valls, G.; Malo, J. Nonlinearities and adaptation of color vision from sequential principal curves analysis. Neural Comput. 2012, 24, 2751–2788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laparra, V.; Malo, J. Visual aftereffects and sensory nonlinearities from a single statistical framework. Front. Hum. Neurosci. 2015, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Villa, A.; Martín, A.; Vazquez-Corral, J.; Bertalmío, M.; Malo, J. Color illusions also deceive CNNs for low-level vision tasks: Analysis and implications. Vis. Res. 2020, 176, 156–174. [Google Scholar] [CrossRef]
- Malo, J.; Laparra, V. Psychophysically tuned divisive normalization approximately factorizes the PDF of natural images. Neural Comput. 2010, 22, 3179–3206. [Google Scholar] [CrossRef]
- Gomez-Villa, A.; Bertalmio, M.; Malo, J. Visual Information Flow in Wilson-Cowan Networks. J. Neurophysiol. 2020, 123, 2249–2268. [Google Scholar] [CrossRef]
- Malo, J. Spatio-Chromatic Information available from different Neural Layers via Gaussianization. J. Math. Neurosci. 2020, 10, 18. [Google Scholar] [CrossRef]
- Webster, M.A.; Mollon, J. Adaptation and the color statistics of natural images. Vis. Res. 1997, 37, 3283–3298. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.H. The Verriest Lecture: Color vision in an uncertain world. JOSA A 2018, 35, 192–201. [Google Scholar] [CrossRef]
- Malo, J. Information flow in Color Appearance Neural Networks. In Proceedings of the Entropy Conference, Porto, Portugal; 2021; p. 48. Available online: https://entropy2021.sciforum.net/ (accessed on 5 October 2022).
- Stockman, A.; Brainard, D. OSA Handbook of Optics, 3rd ed.; McGraw-Hill: New York, NY, USA, 2010; Chapter Color Vision Mechanisms; pp. 147–152. [Google Scholar]
- Stockman, A.; Sharpe, L. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vis. Res. 2000, 40, 1711–1737. [Google Scholar] [CrossRef] [Green Version]
- Fairchild, M. Color Appearance Models; The Wiley-IS & T Series in Imaging Science and Technology; Wiley: Sussex, UK, 2013. [Google Scholar]
- Clifford, W.; Webster, M.; Stanley, G.; Stocker, A.; Kohn, A.; Sharpee, T.; Schwartz, O. Visual adaptation: Neural, psychological and computational aspects. Vis. Res. 2007, 47, 3125–3131. [Google Scholar] [CrossRef] [Green Version]
- Hurvich, L.; Jameson, D. An opponent-process theory of color vision. Psychol. Rev. 1957, 64, 384–404. [Google Scholar] [CrossRef] [Green Version]
- Shapley, R.; Hawken, M. Color in the cortex: Single- and double-opponent cells. Vis. Res. 2011, 51, 701–717. [Google Scholar] [CrossRef] [Green Version]
- Capilla, P.; Diez-Ajenjo, M.; Luque, M.; Malo, J. Corresponding-pair procedure: A new approach to simulation of dichromatic color perception. JOSA A 2004, 21, 176–186. [Google Scholar] [CrossRef]
- Krauskopf, J.; Gegenfurtner, K. Color discrimination and adaptation. Vis. Res. 1992, 32, 2165–2175. [Google Scholar] [CrossRef]
- Romero, J.; García, J.; Jiménez del Barco, L.; Hita, E. Evaluation of color-discrimination ellipsoids in two-color spaces. J. Opt. Soc. Am. A 1993, 10, 827–837. [Google Scholar] [CrossRef]
- Wyszecki, G.; Stiles, W. Color Science: Concepts and Methods, Quantitative Data and Formulae; John Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: https://www.deeplearningbook.org (accessed on 5 October 2022).
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Watanabe, S. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 1960, 4, 66–82. [Google Scholar] [CrossRef]
- Studeny, M.; Vejnarova, J. The Multi-information function as a tool for measuring stochastic dependence. In Learning in Graphical Models; Jordan, M.I., Ed.; Kluwer: Amsterdam, The Netherlands, 1998; pp. 261–298. [Google Scholar]
- Bell, A.J.; Sejnowski, T.J. An information maximization approach to blind separation and blind deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef] [PubMed]
- Laparra, V.; Camps-Valls, G.; Malo, J. Iterative gaussianization: From ICA to random rotations. IEEE Trans. Neural Netw. 2011, 22, 537–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laparra, V.; Johnson, E.; Camps, G.; Santos, R.; Malo, J. Information Theory Measures via Multidimensional Gaussianization. arXiv 2020, arXiv:2010.03807. [Google Scholar]
- Johnson, J.; Laparra, V.; Santos, R.; Camps, G.; Malo, J. Information Theory in Density Destructors. In Proceedings of the 7th International Conference of Machine Learning ICML 2019, Workshop on Invertible Normalization Flows, Long Beach, CA, USA, 10–15 June 2019. [Google Scholar]
- Kozachenko, L.; Leonenko, N. Sample estimate of the entropy of a random vector. Probl. Inf. Trans. 1987, 23, 95–101. [Google Scholar]
- Marin-Franch, I.; Foster, D.H. Estimating Information from Image Colors: An Application to Digital Cameras and Natural Scenes. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 78–91. [Google Scholar] [CrossRef] [Green Version]
- CIE-Commission. Colorimetry-Part 4: CIE 1976 L*a*b* Colour Space; Technical Report ISO/CIE 11664-4:2019; CIE: Cambridge, UK, 1976. [Google Scholar]
- Luo, M.; Lo, M.; Kuo, W. The LLAB colour model. Color Res. Appl. 1996, 21, 412. [Google Scholar] [CrossRef]
- Luo, M.; Hunt, R. The structure of the CIE 1997 colour appearance model (CIECAM97s). Color Res. Appl. 1998, 22, 138–146. [Google Scholar] [CrossRef]
- Moroney, N. The CIECAM02 Color Appearance Model. In Proceedings of the 10th Color Imaging Conference, Scottsdale, AZ, USA, 12–15 November 2002; pp. 23–27. [Google Scholar]
- Malo, J.; Luque, M. ColorLab: A Matlab Toolbox for Color Science and Calibrated Color Image Processing. 2002. Available online: http://isp.uv.es/code/visioncolor/colorlab.html (accessed on 5 October 2022).
- Laughlin, S.B. Matching coding to scenes to enhance efficiency. In Physical and Biological Processing of Images; Braddick, O.J., Sleigh, A.C., Eds.; Springer: Berlin, Germany, 1983; pp. 42–52. [Google Scholar]
- Foster, D.; Nascimento, S.; Amano, K. Information limits on neural identification of colored surfaces in natural scenes. Vis. Neurosci. 2004, 21, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.H.; Marín-Franch, I.; Amano, K.; Nascimento, S.M.C. Approaching ideal observer efficiency in using color to retrieve information from natural scenes. J. Opt. Soc. Am. A 2009, 26, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Marin-Franch, I.; Foster, D. Number of perceptually distinct surface colors in natural scenes. J. Vis. 2010, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.; Marin-Franch, I.; Nascimento, S. Coding efficiency of CIE color spaces. In Proceedings of the 16th Color Imaging Conference on Social Imaging Science and Technology, Portland, OR, USA, 10–14 November 2008; pp. 285–288. [Google Scholar]
- Lungarella, M.; Sporns, O. Mapping Information Flow in Sensorimotor Networks. PLoS Comput. Biol. 2006, 2, e144. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Steeg, G.; Malo, J. Functional Connectivity in Visual Areas from Total Correlation. arXiv 2022, arXiv:2208.05770. [Google Scholar]
- Wang, B.; Pourshafeie, A.; Zitnik, M.; Zhu, J.; Bustamante, C.; Batzoglou, S.; Leskovec, J. Network enhancement as a general method to denoise weighted biological networks. Nat. Comm. 2018, 9, 3108. [Google Scholar] [CrossRef]
Physiol. Models | No Adaptation | Von Kries | Webster–Clifford |
---|---|---|---|
Linear LMS input | 5.71 ± 0.04 | 6.26 ± 0.02 | 6.29 ± 0.03 |
Linear ATD channels | 3.23 ± 0.03 | 2.21 ± 0.03 | 2.30 ± 0.05 |
Pleistochrome | 3.26 ± 0.04 | 2.22 ± 0.04 | 2.33 ± 0.05 |
Color App. Models | CIE Lab | LLAB | CIECAM |
LMS nonlin. sensors | 5.89 ± 0.04 | 5.84 ± 0.02 | 6.55 ± 0.03 |
ATD nonlin. sensors | 1.04 ± 0.06 | 2.00 ± 0.02 | 1.58 ± 0.05 |
Statist. Model | No adaptation | Von Kries | Webster–Clifford |
Infomax SPCA | 1.12 ± 0.04 | 0.95 ± 0.06 | 1.08 ± 0.04 |
Physiol. Models | No Adaptation | Von Kries | Webster–Clifford |
---|---|---|---|
Linear LMS input | −4.97 ± 0.04 | −4.01 ± 0.04 | −4.01 ± 0.02 |
Linear ATD channels | −1.68 ± 0.03 | −0.71 ± 0.03 | −0.72 ± 0.01 |
Pleistochrome | 6.24 ± 0.04 | 7.64 ± 0.0.3 | 7.56 ± 0.02 |
Color App. Models | CIE Lab | LLAB | CIECAM |
LMS nonlin. sensors | 1.93 ± 0.04 | −2.18 ± 0.02 | −1.70 ± 0.03 |
ATD nonlin. sensors | 4.61 ± 0.02 | 1.10 ± 0.03 | 2.74 ± 0.01 |
Statist. Model | No adaptation | Von Kries | Webster–Clifford |
Infomax SPCA | 8.70 ± 0.04 | 8.82 ± 0.03 | 8.71 ± 0.03 |
Physiol. Models | No Adaptation | Von Kries | Webster–Clifford |
---|---|---|---|
Linear LMS input | |||
Linear ATD channels | |||
Pleistochrome | |||
Color App. Models | CIE Lab | LLAB | CIECAM |
LMS nonlin. sensors | |||
ATD nonlin. sensors | 9.8 ± 0.2 | 8.8 ± 0.3 | |
Statist. Model | No adaptation | Von Kries | Webster–Clifford |
Infomax SPCA | 8.9 ± 0.2 | 8.8 ± 0.3 |
Physiol. Models | No Adaptation | Von Kries | Webster–Clifford |
---|---|---|---|
Linear LMS input | 5.7 ± 0.1 | 0.84 ± 0.05 | 0.67± 0.06 |
Linear ATD channels | 3.6 ± 0.3 | 0.83 ± 0.05 | 0.78 ± 0.04 |
Pleistochrome | 3.6 ± 0.3 | 0.7 ± 0.1 | 0.82 ± 0.07 |
Color App. Models | CIE Lab | LLAB | CIECAM |
LMS nonlin. sensors | 0.54 ± 0.07 | 0.72 ± 0.09 | 0.73 ± 0.07 |
ATD nonlin. sensors | 0.55 ± 0.07 | 0.72 ± 0.07 | 0.72 ± 0.02 |
Statist. Model | No adaptation | Von Kries | Webster–Clifford |
Infomax SPCA | 2.2 ± 0.1 | 1.8 ± 0.1 | 1.6 ± 0.1 |
Retinal Adaptation | Opponency | Saturation | |
---|---|---|---|
Physiol. Models | 0.1 ± 0.1 | 2.5 ± 0.2 | 1.0 ± 0.2 |
Retinal Adaptation | Opponency + Saturation | ||
Color App. Mod. Infomax SPCA | 0.9 ± 0.9 0.0 ± 0.3 | 2.8 ± 0.4 3.7 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malo, J. Information Flow in Biological Networks for Color Vision. Entropy 2022, 24, 1442. https://doi.org/10.3390/e24101442
Malo J. Information Flow in Biological Networks for Color Vision. Entropy. 2022; 24(10):1442. https://doi.org/10.3390/e24101442
Chicago/Turabian StyleMalo, Jesús. 2022. "Information Flow in Biological Networks for Color Vision" Entropy 24, no. 10: 1442. https://doi.org/10.3390/e24101442
APA StyleMalo, J. (2022). Information Flow in Biological Networks for Color Vision. Entropy, 24(10), 1442. https://doi.org/10.3390/e24101442