A New Class of Weighted CUSUM Statistics
Abstract
:1. Introduction
2. Exact and Asymptotic Distributions of the WC Statistics
2.1. Explicit Distribution for a Normal Model
2.2. Karhunen–Loève Expansion
2.3. Graphical Model
2.4. Normal Mixed Model
2.5. Poisson Mixed Model
2.6. Weak Dependence
3. Power and Change Point Estimation
4. Simulations
5. Data Analysis
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
References
- Csörgö, M.; Horváth, L. Limit Theorems in Change-Point Analysis; Wiley: Chichester, UK, 1997. [Google Scholar]
- Jiang, F.; Zhao, Z.; Shao, X. Modeling the COVID-19 infection trajectory: A piecewise linear quantile trend model. J. R. Statist. Soc. B 2021, accepted. [Google Scholar]
- Liu, B.; Zhou, C.; Zhang, X.; Liu, Y. A unified data-adaptive framework for high dimensional change point detection. J. R. Statist. Soc. B 2020, 82, 933–963. [Google Scholar] [CrossRef]
- Yu, M.; Chen, X. Finite sample change point inference and identification for high-dimensional mean vectors. J. R. Statist. Soc. B 2021, 83, 247–270. [Google Scholar] [CrossRef]
- Jandhyala, V.; Fotopoulos, S.; MacNeill, I.; Liu, P. Inference for single and multiple change-points in time series. J. Time Ser. Anal. 2013, 34, 423–446. [Google Scholar] [CrossRef]
- Gardner, J.A. On detecting changes in the mean of normal variates. Ann. Math. Statist. 1969, 40, 116–126. [Google Scholar] [CrossRef]
- Perron, P. Dealing with structural breaks. In Palgrave Handbook of Econometrics: Volume 1, Econometric Theory; Mills, T.C., Patterson, K., Eds.; Publisher: Palgrave Macmillan, London, UK, 2006; pp. 278–352. [Google Scholar]
- MacNeill, I. Properties of sequences of partial sums of polynomial regression residuals with applications to tests for change of regression at unknown times. Ann. Statist. 1978, 6, 422–433. [Google Scholar] [CrossRef]
- Daniels, H.E. Saddlepoint approximations in statistics. Ann. Math. Statist. 1954, 25, 631–650. [Google Scholar] [CrossRef]
- Reid, N. Saddlepoint methods and statistical inference (with discussion). Statist. Sci. 1988, 3, 213–238. [Google Scholar]
- Reid, N. Approximations and asymptotics, In Statistics Theory Model; Essays in Honor of D.R. Cox; Chapman and Hall: London, UK, 1991; pp. 287–334. [Google Scholar]
- Shi, X.; Wang, X.-S.; Reid, N. Saddlepoint approximation of nonlinear moments. Statist. Sinica 2014, 24, 1597–1611. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Reid, N.; Wu, Y. Approximation to the moments of ratios of cumulative sums. Can. J. Statist. 2014, 42, 325–336. [Google Scholar] [CrossRef]
- Akman, V.E.; Raftery, A.E. Asymptotic inference for a change-point Poisson process. Ann. Statist. 1986, 14, 1583–1590. [Google Scholar] [CrossRef]
- Loader, C.R. A log-linear model for a Poisson process change point. Ann. Statist. 1992, 20, 1391–1411. [Google Scholar] [CrossRef]
- Imhof, J.P. Computing the distribution of quadratic forms in normal variables. Biometrika 1961, 48, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Kuonen, D. Saddlepoint approximations for distributions of quadratic forms in normal variables. Biometrika 1999, 86, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Daniels, H.E. Tail probability approximations. Int. Statist. Rev. 1987, 55, 37–48. [Google Scholar] [CrossRef]
- Lugannani, R.; Rice, S.O. Saddlepoint approximations for the distribution of the sum of independent random variables. Adv. Appl. Probab. 1980, 12, 475–490. [Google Scholar] [CrossRef]
- Anderson, T.; Darling, D. Asymptotic theory of certain “goodness of fit”criteria based on stochastic processes. Ann. Math. Statist. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- de Micheaux, P.L. R Package CompQuadForm. 2017. Available online: https://cran.r-project.org/web/packages/CompQuadForm/index.html (accessed on 25 December 2020).
- Anderson, T.; Darling, D. A test of ‘‘goodness of fit”. J. Amer. Statist. Assoc. 1954, 49, 765–769. [Google Scholar] [CrossRef]
- Wald, A.; Wolfowitz, J. On a test whether two samples are from the same distribution. Ann. Math. Statist. 1940, 11, 147–162. [Google Scholar] [CrossRef]
- Biswas, M.; Mukhopadhyay, M.; Ghosh, A.K. A distribution-free two-sample run test applicable to high-dimensional data. Biometrika 2014, 101, 913–926. [Google Scholar] [CrossRef]
- Shi, X.; Wu, Y.; Rao, C.R. Consistent and powerful graph-based change-point test for high-dimensional data. Proc. Natl. Acad. Sci. USA 2017, 114, 3969–3974. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Wu, Y.; Rao, C.R. Consistent and powerful non-Euclidean graph-based change-point test with applications to segmenting random interfered video data. Proc. Natl. Acad. Sci. USA 2018, 115, 5914–5919. [Google Scholar] [CrossRef]
- Hall, P.; Ormerod, J.T.; Wand, M.P. Theory of Gaussian variational approximation for a Poisson mixed model. Statist. Sinica 2011, 21, 369–389. [Google Scholar]
- Hall, P.; Pham, T.; Wand, M.P.; Wang, S.S.J. Asymptotic normality and valid inference for Gaussian variational approximation. Ann. Statist. 2011, 39, 2502–2532. [Google Scholar] [CrossRef] [Green Version]
- Peligrad, M. An invariance principle for ϕ-mixing sequences. Ann. Probab. 1985, 13, 1304–1313. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Solo, V. Asymptotics for linear processes. Ann. Statist. 1992, 20, 971–1001. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, X. Testing for change points in time series. J. Am. Statist. Assoc. 2010, 105, 1228–1240. [Google Scholar] [CrossRef]
- Bai, J. Least square estimation of a shift in linear processes. J. Time Ser. Anal. 1994, 15, 453–472. [Google Scholar] [CrossRef] [Green Version]
- Bai, J. Estimation of a change point in multiple regressions. Rev. Econ. Stat. 1997, 79, 551–563. [Google Scholar] [CrossRef]
- Kokoszka, P.; Leipus, R.D. Change-point in the mean of dependent observations. Statist. Probab. Lett. 1998, 40, 385–393. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, N. Graph-based change-point detection. Ann. Statist. 2015, 43, 139–176. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, N. gSeg: Graph-Based Change-Point Detection (G-Segmentation). R Package Version 0.1. 2014. Available online: https://cran.r-project.org/web/packages/gSeg/index.html (accessed on 27 December 2020).
- Chen, M.; Shi, X.; Li, H. GraphCpClust: Graph-Based Change-Point Detection and Clustering. R Package Version 0.1. 2021. Available online: https://github.com/Meiqian-Chen/GraphCpClust (accessed on 27 April 2021).
- Lihoreau, M.; Chittka, L.; Raine, N.E. Monitoring flower visitation networks and interactions between pairs of bumble bees in a large outdoor flight cage. PLoS ONE 2016, 11, e0150844. [Google Scholar] [CrossRef]
- Zou, H. The adaptive Lasso and its oracle properties. J. Am. Statist. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef]
- Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Jin, B.; Shi, X.; Wu, Y. A novel and fast methodology for simultaneous multiple structural break estimation and variable selection for non-stationary time series models. Statist. Comput 2013, 23, 221–231. [Google Scholar] [CrossRef]
- Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Statist. 2010, 38, 894–942. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Fryzlewicz, P. Multiple-change-point detection for high dimensional time series via sparsified binary segmentation. J. R. Statist. Soc. B 2015, 77, 475–507. [Google Scholar] [CrossRef]
- Fryzlewicz, P. Wild binary segmentation for multiple change-point detection. Ann. Statist. 2014, 42, 2243–2281. [Google Scholar] [CrossRef]
- Wang, T.; Samworth, R.J. High dimensional change point estimation via sparse projection. J. R. Statist. Soc. B 2017, 80, 57–83. [Google Scholar] [CrossRef]
n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Weight | p | 20 | 40 | 60 | 80 | 100 | 200 | 400 | 1000 | 10,000 | ∞ |
0.90 | 1.883 | 1.908 | 1.916 | 1.920 | 1.923 | 1.928 | 1.930 | 1.932 | 1.933 | 1.933 | |
0.925 | 2.111 | 2.136 | 2.145 | 2.149 | 2.151 | 2.156 | 2.159 | 2.160 | 2.161 | ||
0.95 | 2.442 | 2.467 | 2.476 | 2.480 | 2.482 | 2.487 | 2.490 | 2.491 | 2.492 | 2.492 | |
0.975 | 3.027 | 3.052 | 3.061 | 3.065 | 3.067 | 3.072 | 3.075 | 3.076 | 3.077 | 3.070 | |
0.99 | 3.828 | 3.853 | 3.861 | 3.866 | 3.868 | 3.873 | 3.876 | 3.877 | 3.878 | 3.850 | |
0.90 | 0.599 | 0.605 | 0.607 | 0.608 | 0.609 | 0.610 | 0.611 | 0.611 | 0.611 | ||
0.925 | 0.675 | 0.682 | 0.684 | 0.685 | 0.685 | 0.687 | 0.687 | 0.688 | 0.688 | ||
0.95 | 0.786 | 0.792 | 0.794 | 0.795 | 0.796 | 0.797 | 0.798 | 0.798 | 0.798 | ||
0.975 | 0.981 | 0.988 | 0.990 | 0.991 | 0.991 | 0.993 | 0.993 | 0.994 | 0.994 | ||
0.99 | 1.249 | 1.255 | 1.257 | 1.258 | 1.259 | 1.260 | 1.261 | 1.261 | 1.261 |
n | 40 | 80 | |||||||||||||||||||||||||||||
q | 50 | 100 | 50 | 100 | |||||||||||||||||||||||||||
0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | ||||||||||||||||||||||||
23 | 41 | 36 | 67 | 91 | 84 | 39 | 72 | 72 | 96 | 100 | 100 | 43 | 74 | 67 | 97 | 100 | 100 | 75 | 96 | 91 | 100 | 100 | 100 | ||||||||
31 | 43 | 31 | 82 | 92 | 82 | 51 | 73 | 62 | 99 | 100 | 99 | 57 | 77 | 61 | 99 | 100 | 100 | 87 | 97 | 89 | 100 | 100 | 100 | ||||||||
32 | 43 | 23 | 89 | 92 | 64 | 59 | 73 | 46 | 99 | 100 | 91 | 61 | 74 | 49 | 100 | 100 | 97 | 91 | 97 | 76 | 100 | 100 | 100 | ||||||||
MST | 3 | 5 | 4 | 7 | 6 | 10 | 3 | 5 | 5 | 6 | 19 | 9 | 3 | 4 | 5 | 7 | 21 | 10 | 5 | 8 | 4 | 13 | 35 | 14 | |||||||
MST | 18 | 24 | 16 | 44 | 38 | 44 | 33 | 29 | 38 | 75 | 77 | 75 | 21 | 21 | 21 | 65 | 80 | 69 | 36 | 43 | 35 | 95 | 99 | 98 | |||||||
SHP | 4 | 6 | 5 | 7 | 9 | 12 | 4 | 6 | 9 | 10 | 16 | 6 | 3 | 8 | 6 | 9 | 22 | 13 | 5 | 6 | 8 | 13 | 24 | 16 | |||||||
SHP | 10 | 13 | 8 | 33 | 37 | 33 | 17 | 23 | 18 | 67 | 77 | 65 | 9 | 12 | 13 | 49 | 71 | 54 | 22 | 32 | 21 | 90 | 97 | 92 |
n | 40 | 80 | |||||||||||||||||||||||||||||
q | 50 | 100 | 50 | 100 | |||||||||||||||||||||||||||
0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | ||||||||||||||||||||||||
18 | 35 | 40 | 64 | 92 | 81 | 37 | 74 | 62 | 89 | 100 | 98 | 43 | 72 | 59 | 94 | 100 | 99 | 73 | 98 | 90 | 100 | 100 | 100 | ||||||||
28 | 36 | 37 | 80 | 94 | 74 | 50 | 76 | 57 | 98 | 100 | 97 | 53 | 74 | 52 | 98 | 100 | 99 | 84 | 98 | 87 | 100 | 100 | 100 | ||||||||
32 | 38 | 27 | 83 | 95 | 56 | 58 | 75 | 42 | 99 | 100 | 92 | 60 | 72 | 44 | 100 | 100 | 96 | 89 | 99 | 73 | 100 | 100 | 100 | ||||||||
MST | 4 | 5 | 6 | 4 | 5 | 4 | 6 | 6 | 6 | 5 | 10 | 6 | 4 | 4 | 6 | 4 | 24 | 20 | 5 | 6 | 2 | 8 | 25 | 20 | |||||||
MST | 20 | 11 | 24 | 41 | 44 | 39 | 27 | 28 | 27 | 70 | 72 | 64 | 22 | 21 | 24 | 60 | 75 | 65 | 38 | 39 | 33 | 95 | 100 | 95 | |||||||
SHP | 4 | 4 | 8 | 10 | 15 | 13 | 6 | 5 | 10 | 17 | 28 | 21 | 8 | 6 | 5 | 10 | 29 | 18 | 9 | 11 | 6 | 28 | 54 | 41 | |||||||
SHP | 9 | 7 | 11 | 26 | 41 | 26 | 16 | 20 | 18 | 55 | 70 | 57 | 12 | 12 | 15 | 44 | 59 | 49 | 22 | 28 | 23 | 92 | 96 | 88 |
n | 49 | 98 | 245 | |||||
4 | 40 | 7 | 79 | 19 | 198 | |||
41 | 82 | 206 | ||||||
4 | 8 | 19 | ||||||
4 | 8 | 19 | ||||||
MST | 4 | 7 | 19 | |||||
SHP | 4 | 7 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Wang, X.-S.; Reid, N. A New Class of Weighted CUSUM Statistics. Entropy 2022, 24, 1652. https://doi.org/10.3390/e24111652
Shi X, Wang X-S, Reid N. A New Class of Weighted CUSUM Statistics. Entropy. 2022; 24(11):1652. https://doi.org/10.3390/e24111652
Chicago/Turabian StyleShi, Xiaoping, Xiang-Sheng Wang, and Nancy Reid. 2022. "A New Class of Weighted CUSUM Statistics" Entropy 24, no. 11: 1652. https://doi.org/10.3390/e24111652
APA StyleShi, X., Wang, X. -S., & Reid, N. (2022). A New Class of Weighted CUSUM Statistics. Entropy, 24(11), 1652. https://doi.org/10.3390/e24111652