Symplectic Radon Transform and the Metaplectic Representation
Abstract
:1. Introduction
- In Section 2, we study the “easy case” of systems with one degree of freedom; this allows us to present the main ideas of this paper without using too much new terminology (for instance, any line through the origin of the phase plane is a Lagrangian subspace).
- In Section 3, we deal with the multi-dimensional case and give a working definition of the symplectic Radon transform from the point of view of operator theory, with a particular emphasis on the metaplectic representation of the symplectic group. We prove an inversion formula allowing the reconstruction of a state from the knowledge of its Radon transform; in particular, the case of Gaussian states is discussed, which allows to give new insight in the old “Pauli problem”.
- For the reader’s convenience, we have included two appendices where we shortly review the main properties of the metaplectic group (Appendix A) and of the Lagrangian Grassmannian (Appendix B).
2. The Case n = 1
- (i)
- The Radon transform is given by the formula
- (ii)
- The inverse Radon transform is given by the formula:
- (iii)
- The Radon transform of ψ is given by the line integral
3. The Multivariate Case
3.1. Definitions
3.2. The Radon Inversion Formula
3.3. Interpretation as Generalized Marginals
4. Radon Transform of Generalized Gaussians
4.1. Generalized Gaussians
4.2. The Radon Transform of
4.3. Application: The Pauli Problem
5. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Metaplectic Group Mp(n)
Appendix B. The Lagrangian Grassmannian
References
- Radon, J. On the Determination of Functions from their Integrals along Certain Manifolds. Ber. Sachsige Akad. Wiss. 1917, 69, 262–277. (In German) [Google Scholar] [CrossRef] [PubMed]
- Vogel, K.; Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 1989, 40, 2847. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Different realizations of the tomographic principle in quantum state measurement. J. Mod. Opt. 1997, 44, 2281–2292. [Google Scholar] [CrossRef]
- Asorey, M.; Facchi, P.; Man’ko, V.I.; Marmo, G.; Pascazio, S.; Sudarshan, E.C.G. Generalized quantum tomographic maps. Phys. Scr. 2012, 85, 85065001. [Google Scholar] [CrossRef] [Green Version]
- Facchi, P.; Ligabo, M.; Pascazio, S. On the inversion of the Radon transform: Standard versus M2 approach. J. Mod. Opt. 2010, 57, 239–243. [Google Scholar] [CrossRef]
- Chernega, V.; Man’ko, O.V.; Man’ko, V.I. Entangled Qubit States and Linear Entropy in the Probability Representation of Quantum Mechanics. Entropy 2022, 24, 527. [Google Scholar] [CrossRef] [PubMed]
- Ibort, A.; Man’ko, V.I.; Marmo, G.; Simoni, A.; Ventriglia, F. An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 2009, 79, 065013. [Google Scholar] [CrossRef] [Green Version]
- Ibort, A.; Man’ko, V.I.; Marmo, G.; Simoni, A.; Ventriglia, F. On the tomographic picture of quantum mechanics. Phys. Lett. A 2010, 374, 2614–2617. [Google Scholar] [CrossRef] [Green Version]
- López-Saldívar, J.A.; Man’ko, M.A.; Man’ko, V.I. Measurement of the Temperature Using the Tomographic Representation of Thermal States for Quadratic Hamiltonians. Entropy 2021, 23, 1445. [Google Scholar] [CrossRef] [PubMed]
- Man’ko, O.V.; Man’ko, V.I. Probability Representation of Quantum States. Entropy 2021, 23, 549. [Google Scholar] [CrossRef] [PubMed]
- Ibort, A.; López-Yela, A. Quantum tomography and the quantum Radon transform. Inverse Probl. Imaging 2021, 15, 893–928. [Google Scholar] [CrossRef]
- de Gosson, M. Symplectic Geometry and Quantum Mechanics; Series “Operator Theory: Advances and Applications”; Birkhäuser: Basel, Switzerland, 2006; Volume 166. [Google Scholar]
- de Gosson, C.; Gosson, M.d. The Pauli Problem for Gaussian Quantum States: Geometric Interpretation. Mathematics 2021, 9, 2578. [Google Scholar] [CrossRef]
- de Gosson, M. Quantum Harmonic Analysis of the Density Matrix. Quanta 2018, 7, 74–110. [Google Scholar] [CrossRef] [Green Version]
- de Gosson, M. Quantum Harmonic Analysis: An Introduction; Volume 4 in the Series Advances in Analysis and Geometry; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- de Gosson, M. The Wigner Transform, World Scientific; Series Advanced Texts in Mathematics; World Scientific: Singapore, 2017. [Google Scholar]
- Park, J.; Lu, Y.; Lee, J.; Shen, Y.; Zhang, K.; Zhang, S.; Zubairy, M.S.; Kim, K.; Nha, H. Revealing nonclassicality beyond Gaussian states via a single marginal distribution. Proc. Natl. Acad. Sci. USA 2017, 114, 891–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littlejohn, R.G. The semiclassical evolution of wave packets. Phys. Rep. 1986, 138, 193–291. [Google Scholar] [CrossRef] [Green Version]
- Pauli, W. General Principles of Quantum Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; [original title: Prinzipien der Quantentheorie; Handbuch der Physik: V.5.1, 1958]. [Google Scholar]
- de Gosson, M.; Hiley, B. Imprints of the Quantum World in Classical Mechanics. Found. Phys. 2011, 41, 1415–1436. [Google Scholar] [CrossRef] [Green Version]
- Gröchenig, K. Foundation of Time-Frequency Analysis; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Shubin, M.A. Pseudodifferential Operators and Spectral Theory; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Leray, J. Lagrangian Analysis and Quantum Mechanics, a Mathematical Structure Related to Asymptotic Expansions and the Maslov Index; MIT Press: Cambridge, UK, 1982. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Gosson, M.A. Symplectic Radon Transform and the Metaplectic Representation. Entropy 2022, 24, 761. https://doi.org/10.3390/e24060761
de Gosson MA. Symplectic Radon Transform and the Metaplectic Representation. Entropy. 2022; 24(6):761. https://doi.org/10.3390/e24060761
Chicago/Turabian Stylede Gosson, Maurice A. 2022. "Symplectic Radon Transform and the Metaplectic Representation" Entropy 24, no. 6: 761. https://doi.org/10.3390/e24060761
APA Stylede Gosson, M. A. (2022). Symplectic Radon Transform and the Metaplectic Representation. Entropy, 24(6), 761. https://doi.org/10.3390/e24060761