On the Inertial Range Bounds of K-41-like Magnetohydrodynamics Turbulence
Abstract
:1. Introduction
- 1.
- for any the vector function lies in the following function space,
- 2.
- the pair is a distributional solution of (2); i.e., for every in
- 3.
- the following energy inequality is satisfied,
2. Estimates for the Solution Field in a Fourier Space
2.1. The Fourier Transform
2.2. A Prior Estimates
3. Estimates on the Spectral Energy Function and Inertial Ranges
- 1.
- Inequality (80) is a necessary condition on the parameters so that exhibits K-41-like phenomenon.
- 2.
- An absolute lower bound for the inertial range is given by
- 3.
- An absolute upper bound for the inertial range is given by
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, G.Q.; Glimm, J. Kolmogorov’s Theory of Turbulence and Inviscid Limit of the Navier-Stokes Equations in ℝ3. Commun. Math. Phys. 2012, 310, 267–283. [Google Scholar] [CrossRef]
- Davidson, P.A.; Kaneda, Y.; Moffatt, K.; Sreenivasan, K.R. A Voyage through Turbulence; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Reynolds, O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proc. R. Soc. Lond. 1883, 35, 84–99. [Google Scholar]
- Reynolds, O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proc. R. Soc. Lond. 1894, 186, 40–45. [Google Scholar]
- Tikhomirov, V.M. Selected Works of AN Kolmogorov: Volume I: Mathematics and Mechanics; Springer Science & Business Media: Dordrecht, The Netherlands, 1991; Volume 25. [Google Scholar]
- Jackson, D.; Launder, B. Osborne Reynolds and the publication of his papers on turbulent flow. Annu. Rev. Fluid Mech. 2007, 39, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Alfonsi, G. Reynolds-averaged Navier-Stokes equations for turbulence modeling. Appl. Mech. Rev. 2009, 62, 040802. [Google Scholar] [CrossRef]
- Argyropoulos, C.D.; Markatos, N. Recent advances on the numerical modelling of turbulent flows. Appl. Math. Model. 2015, 39, 693–732. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid. Dokl. Akad. Nauk SSSR 1941, 31, 538–540. [Google Scholar]
- Kolmogorov, A.N. Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR A 1941, 32, 16–18. [Google Scholar]
- Kolmogorov, A. Equations of turbulent motion in an incompressible fluid. Dokl. Akad. Nauk SSSR 1941, 30, 299–303. [Google Scholar]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 1941, 30, 301–305. [Google Scholar]
- Monin, A.S.; Yaglom, A. Statistical Fluid Mechanics, Volume I; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence; Dover Publications: New York, NY, USA, 2007. [Google Scholar]
- Kraichnan, R.H. Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 1965, 8, 1385–1387. [Google Scholar] [CrossRef] [Green Version]
- Kraichnan, R.H. Inertial-range transfer in two-and three-dimensional turbulence. J. Fluid Mech. 1971, 47, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Iroshnikov, P. Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 1964, 7, 566. [Google Scholar]
- Dobrowolny, M.; Mangeney, A.; Veltri, P. Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 1980, 45, 144. [Google Scholar] [CrossRef]
- Verma, M.K. Statistical theory of magnetohydrodynamic turbulence: Recent results. Phys. Rep. 2004, 401, 229–380. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Hydromagnetic turbulence. I. A deductive theory. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 233, 322–330. [Google Scholar]
- Marsch, E.; Tu, C.Y. On the radial evolution of MHD turbulence in the inner heliosphere. J. Geophys. Res. Space Phys. 1990, 95, 8211–8229. [Google Scholar] [CrossRef]
- Marsch, E. Turbulence in the solar wind. In Reviews in Modern Astronomy; Springer: Berlin/Heidelberg, Germany, 1991; pp. 145–156. [Google Scholar]
- Matthaeus, W.H.; Zhou, Y. Extended inertial range phenomenology of magnetohydrodynamic turbulence. Phys. Fluids B Plasma Phys. 1989, 1, 1929–1931. [Google Scholar] [CrossRef]
- Biskamp, D. Cascade models for magnetohydrodynamic turbulence. Phys. Rev. E 1994, 50, 2702. [Google Scholar] [CrossRef]
- Boldyrev, S. On the spectrum of magnetohydrodynamic turbulence. Astrophys. J. Lett. 2005, 626, L37. [Google Scholar] [CrossRef]
- Zinyakov, T.A.; Petrosyan, A.S. Spectra of Decaying Two-Dimensional Magnetohydrodynamic Turbulence on a β-Plane. JETP Lett. 2020, 111, 76–84. [Google Scholar] [CrossRef]
- Fraternale, F.; Pogorelov, N.V.; Richardson, J.D.; Tordella, D. Magnetic turbulence spectra and intermittency in the heliosheath and in the local interstellar medium. Astrophys. J. 2019, 872, 40. [Google Scholar] [CrossRef] [Green Version]
- Botygina, N.; Kovadlo, P.; Kopylov, E.; Lukin, V.; Tuev, M.; Shikhovtsev, A.Y. Estimation of the astronomical seeing at the large solar vacuum telescope site from optical and meteorological measurements. Atmos. Ocean. Opt. 2014, 27, 142–146. [Google Scholar] [CrossRef]
- Narita, Y. Spectral moments for the analysis of frequency shift, broadening, and wavevector anisotropy in a turbulent flow. Earth Planets Space 2017, 69, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Biryuk, A.; Craig, W. Bounds on Kolmogorov spectra for the Navier–Stokes equations. Phys. D Nonlinear Phenom. 2012, 241, 426–438. [Google Scholar] [CrossRef] [Green Version]
- Leray, J. Sur le systeme d’équations aux dérivés partielles qui régit l’écoulement premanant des fluids visqueux. C. R. Math. Acad. Sci. Paris 1931, 1180–1182. [Google Scholar]
- Leray, J. Étude de Diverses Équations Intégrales non Linéaires et de Quelques Problèmes que Pose l’Hydrodynamique. 1933. Available online: http://www.numdam.org/article/THESE_1933__142__1_0.pdf (accessed on 30 December 2021).
- Duchon, J.; Robert, R. Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 2000, 13, 249. [Google Scholar] [CrossRef]
- Kato, T. Strong L p-solutions of the Navier-Stokes equation in R m, with applications to weak solutions. Math. Z. 1984, 187, 471–480. [Google Scholar] [CrossRef]
- Eyink, G.L. Dissipation in turbulent solutions of 2D Euler equations. Nonlinearity 2001, 14, 787. [Google Scholar] [CrossRef]
- Lopes Filho, M.C.; Mazzucato, A.L.; Lopes, H.J.N. Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence. Arch. Ration. Mech. Anal. 2006, 179, 353–387. [Google Scholar] [CrossRef]
- Arsénio, D.; Ibrahim, S.; Masmoudi, N. A derivation of the magnetohydrodynamic system from Navier–Stokes–Maxwell systems. Arch. Ration. Mech. Anal. 2015, 216, 767–812. [Google Scholar] [CrossRef]
- Peng, Y.J.; Wang, S. Rigorous derivation of incompressible e-MHD equations from compressible Euler–Maxwell equations. SIAM J. Math. Anal. 2008, 40, 540–565. [Google Scholar] [CrossRef]
- Goedbloed, J. ‘Derivation’ of the MHD Equations. Fusion Technol. 1998, 33, 97–104. [Google Scholar] [CrossRef]
- Cannone, M.; Miao, C.; Prioux, N.; Yuan, B. The Cauchy problem for the magneto-hydrodynamic system. Banach Cent. Publ. 2006, 74, 59–93. [Google Scholar]
- Wolff, T.H. Lectures on Harmonic Analysis; American Mathematical Society: Providence, RI, USA, 2003; Volume 29. [Google Scholar]
- Hörmander, L. The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Bahouri, H.; Chemin, J.Y.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 343. [Google Scholar]
- Serrin, J. Local behavior of solutions of quasi-linear equations. Acta Math. 1964, 111, 247–302. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tegegn, T.A. On the Inertial Range Bounds of K-41-like Magnetohydrodynamics Turbulence. Entropy 2022, 24, 833. https://doi.org/10.3390/e24060833
Tegegn TA. On the Inertial Range Bounds of K-41-like Magnetohydrodynamics Turbulence. Entropy. 2022; 24(6):833. https://doi.org/10.3390/e24060833
Chicago/Turabian StyleTegegn, Tesfalem Abate. 2022. "On the Inertial Range Bounds of K-41-like Magnetohydrodynamics Turbulence" Entropy 24, no. 6: 833. https://doi.org/10.3390/e24060833
APA StyleTegegn, T. A. (2022). On the Inertial Range Bounds of K-41-like Magnetohydrodynamics Turbulence. Entropy, 24(6), 833. https://doi.org/10.3390/e24060833