A Dynamically Consistent Nonstandard Difference Scheme for a Discrete-Time Immunogenic Tumors Model
Abstract
:1. Introduction
Non-Dimensionalization of System
2. Andronov–Hopf Bifurcation
- (i)
- and . Then, there exists a conjugate pair of complex eigenvalues of in the condition of non-hyperbolicity.
- (ii)
- , which is known as a transversality condition, that is, the eigenvalues of cross the imaginary axis with non-zero speed [40].
- (iii)
- There exists a discriminatory quantity , which is known as the first Lyapunov exponent (FLE) and is defined as follows:
3. Boundedness of Solutions
4. Existence of Fixed Points and Local Stability Analysis
- The fixed point is stable if and only if for
- The fixed point is non-hyperbolic if and only if
5. Neimark–Sacker Bifurcation
6. Control of Neimark–Sacker Bifurcation
7. Numerical Simulations
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ucar, E.; Özdemir, N.; Altun, E. Fractional order model of immune cells influenced by cancer cells. Math. Model. Nat. Phenom. 2019, 14, 308. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, D.E. Twitter mining for discovery, prediction and causality: Applications and methodologies. Intelligent Systems in Accounting. Financ. Manag. 2015, 22, 227–247. [Google Scholar]
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the Human Development Index (2008–2030): A population-based study. Lancet Oncol. 2012, 13, 790–801. [Google Scholar] [CrossRef]
- Chabner, B.A.; Roberts, T.G., Jr. Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65–72. [Google Scholar] [CrossRef]
- Curti, B.D.; Ochoa, A.C.; Urba, W.J.; Alvord, W.G.; Kopp, W.C.; Powers, G.; Hawk, C.; Creekmore, S.P.; Gause, B.L.; Janik, J.E.; et al. Influence of interleukin-2 regimens on circulating populations of lymphocytes after adoptive transfer of anti-CD3-stimulated T cells: Results from a phase I trial in cancer patients. J. Immunother. Emphas. Tumor Immunol. Off. J. Soc. Biol. Ther. 1996, 19, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S. Immunotherapy with interleukin-2: A study based on mathematical modeling. Int. J. Appl. Math. Comput. Sci. 2008, 18, 389. [Google Scholar] [CrossRef] [Green Version]
- Wyld, L.; Audisio, R.A.; Poston, G.J. The evolution of cancer surgery and future perspectives. Nat. Rev. Clin. Oncol. 2015, 12, 115–124. [Google Scholar] [CrossRef]
- Thariat, J.; Hannoun-Levi, J.M.; Myint, A.S.; Vuong, T.; Gérard, J.P. Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol. 2013, 10, 52–60. [Google Scholar] [CrossRef]
- Thorn, R.M.; Henney, C.S. Kinetic analysis of target cell destruction by effector T cells: I. Delineation of parameters related to the frequency and lytic efficiency of killer cells. J. Immunol. 1976, 117, 2213–2219. [Google Scholar]
- Rescigno, A.; DeLisi, C. Immune surveillance and neoplasia-II A two-stage mathematical model. Bull. Math. Biol. 1977, 39, 487–497. [Google Scholar]
- Perelson, A.S.; Macken, C.A. Kinetics of cell-mediated cytotoxicity: Stochastic and deterministic multistage models. Math. Biosci. 1984, 70, 161–194. [Google Scholar] [CrossRef]
- Merrill, S.J.; Sathananthan, S. Approximate Michaelis-Menten kinetics displayed in a stochastic model of cell-mediated cytotoxicity. Math. Biosci. 1986, 80, 223–238. [Google Scholar] [CrossRef]
- Perelson, A.S.; Bell, G.I. Delivery of lethal hits by cytotoxic T lymphocytes in multicellular conjugates occurs sequentially but at random times. J. Immunol. 1982, 129, 2796–2801. [Google Scholar] [PubMed]
- Macken, C.A.; Perelson, A.S. A multistage model for the action of cytotoxic T lymphocytes in multicellular conjugates. J. Immunol. 1984, 132, 1614–1624. [Google Scholar]
- Mehta, B.C.; Agarwal, M.B. Cyclic oscillations in leukocyte count in chronic myeloid leukemia. Acta Haematol. 1980, 63, 68–70. [Google Scholar] [CrossRef]
- Brondz, B.D. T-Limfotsity i ikh Retseptory v Immunologicheskom Raspoznavanii [T-Lymphocytes and Their Receptors in Immunological Recognition]; Science: Moscow, Russia, 1987. [Google Scholar]
- Nelson, D.S.; Nelson, M. Evasion of host defences by tumours. Immunol. Cell Biol. 1987, 65, 287–304. [Google Scholar] [CrossRef]
- Tanaka, K.; Yoshioka, T.; Bieberich, C.; Jay, G. Role of the major histocompatibility complex class I antigens in tumor growth and metastasis. Annu. Rev. Immunol. 1988, 6, 359–380. [Google Scholar] [CrossRef]
- Wheelock, E.F.; Robinson, M.K. Biology of disease. Endogenous control of the neoplastic process. Lab. Investig. J. Tech. Methods Pathol. 1983, 48, 120–139. [Google Scholar]
- Yefenof, E.; Picker, L.J.; Scheuermann, R.H.; Tucker, T.F.; Vitetta, E.S.; Uhr, J.W. Cancer dormancy: Isolation and characterization of dormant lymphoma cells. Proc. Natl. Acad. Sci. USA 1993, 90, 1829–1833. [Google Scholar] [CrossRef] [Green Version]
- Stewart, T.H.; Wheelock, E.F. Cellular Immune Mechanisms and Tumor Dormancy; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Uhr, J.W.; Tucker, T.; May, R.D.; Siu, H.; Vietta, E.S. Cancer dormancy: Studies of the murine BCL1 lymphoma. Cancer Res. 1991, 51 (Suppl. S18), 5045s–5053s. [Google Scholar]
- Kuznetsov, V.A. Analysis of population dynamics of cells that exhibit natural resistance to tumors. Sov. Immunol. (Immunol.) 1984, 3, 58–68. [Google Scholar]
- Kuznetsov, V.A. Mathematical modeling of the processes of formation of dormant tumors and immunostimulation of their growth. Kibernetika 1987, 4, 96–102. [Google Scholar]
- Kuznetsov, V.A.; Knott, G.D. Modeling tumor regrowth and immunotherapy. Math. Comput. Model. 2001, 33, 1275–1287. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, V.A. A mathematical model for the interaction between cytotoxic T lymphocytes and tumour cells. Analysis of the growth, stabilization, and regression of a B-cell lymphoma in mice chimeric with respect to the major histocompatibility complex. Biomed. Sci. 1991, 2, 465–476. [Google Scholar] [PubMed]
- Abrams, S.I.; Brahmi, Z. Mechanism of K562-induced human natural killer cell inactivation using highly enriched effector cells isolated via a new single-step sheep erythrocyte rosette assay. Ann. L’Institut Pasteur/Immunol. 1988, 139, 361–381. [Google Scholar] [CrossRef]
- Kuznetsov, V.A.; Makalkin, I.A.; Taylor, M.A.; Perelson, A.S. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 1994, 56, 295–321. [Google Scholar] [CrossRef]
- Kar, V.R.; Panda, S.K. Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression. Int. J. Mech. Sci. 2016, 115, 318–324. [Google Scholar] [CrossRef]
- Duan, W.L.; Fang, H.; Zeng, C. The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises. Chaos Solitons Fractals 2019, 127, 96–102. [Google Scholar] [CrossRef]
- Katariya, P.V.; Panda, S.K. Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect. Steel Compos. Struct. 2020, 34, 279–288. [Google Scholar]
- Taj, M.; Khadimallah, M.A.; Hussain, M.; Rashid, Y.; Ishaque, W.; Mahmoud, S.R.; Din, Q.; Alwabli, A.S.; Tounsi, A. Discrimination and bifurcation analysis of tumor immune interaction in fractional form. Adv. Nano Res. 2021, 10, 359–371. [Google Scholar]
- Sweilam, N.H.; Al-Mekhlafi, S.M.; Assiri, T.; Atangana, A. Optimal control for cancer treatment mathematical model using Atangana-Baleanu-Caputo fractional derivative. Adv. Differ. Equ. 2020, 2020, 334. [Google Scholar] [CrossRef]
- Al-Tuwairqi, S.M.; Al-Johani, N.O.; Simbawa, E.A. Modeling dynamics of cancer virotherapy with immune response. Adv. Differ. Equations 2020, 2020, 438. [Google Scholar] [CrossRef]
- Zazoua, A.; Zhang, Y.; Wang, W. Bifurcation analysis of mathematical model of prostate cancer with immunotherapy. Int. J. Bifurc. Chaos 2020, 30, 2030018. [Google Scholar] [CrossRef]
- Ashyani, A.; Mohammadinejad, H.; RabieiMotlagh, O. Hopf bifurcation analysis in a delayed system for cancer virotherapy. Indag. Math. 2016, 27, 318–339. [Google Scholar] [CrossRef]
- Mohamma Mirzaei, N.; Su, S.; Sofia, D.; Hegarty, M.; Abdel-Rahman, M.H.; Asadpoure, A.; Cebulla, C.M.; Chang, Y.H.; Hao, W.; Jackson, P.R.; et al. A Mathematical Model of Breast Tumor Progression Based on Immune Infiltration. J. Pers. Med. 2021, 11, 1031. [Google Scholar] [CrossRef] [PubMed]
- Strogatz, S.; Friedman, M.; Mallinckrodt, A.J.; McKay, S. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Comput. Phys. 1994, 8, 532. [Google Scholar] [CrossRef]
- Mickens, R.E. Nonstandard Finite Difference Models of Differential Equations; World Scientific: Singapore, 1994. [Google Scholar]
- Din, Q.; Shabbir, M.S. A Cubic autocatalator chemical reaction model with limit cycle analysis and consistency preserving discretization. MATCH Commun. Math. Comput. Chem. 2022, 87, 441–462. [Google Scholar] [CrossRef]
- Curtiss, D.R. Recent extentions of Descartes’ rule of signs. Ann. Math. 1918, 19, 251–278. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, D. Complex dynamic behaviors of a discrete-time predator-prey system. Chaos Solitons Fractals 2007, 32, 80–94. [Google Scholar] [CrossRef]
- Khan, M.S. Stability, bifurcation and chaos control in a discrete-time prey-predator model with Holling type-II response. Netw. Biol. 2019, 9, 58. [Google Scholar]
- Khan, M.S. Bifurcation Analysis of a Discrete-Time Four-Dimensional Cubic Autocatalator Chemical Reaction Model with Coupling Through Uncatalysed Reactant. MATCH Commun. Math. Comput. Chem. 2022, 87, 415–439. [Google Scholar] [CrossRef]
- Khan, M.S.; Samreen, M.; Aydi, H.; De la Sen, M. Qualitative analysis of a discrete-time phytoplankton-zooplankton model with Holling type-II response and toxicity. Adv. Differ. Equ. 2021, 2021, 443. [Google Scholar] [CrossRef] [PubMed]
- Din, Q. Global stability and Neimark-Sacker bifurcation of a host-parasitoid model. Int. J. Syst. Sci. 2017, 48, 1194–1202. [Google Scholar] [CrossRef]
- Din, Q.; Donchev, T.; Kolev, D. Stability, bifurcation analysis and chaos control in chlorine dioxide-iodine-malonic acid reaction. MATCH Commun. Math. Comput. Chem. 2018, 79, 577–606. [Google Scholar]
- Khan, M.S.; Ozair, M.; Hussain, T.; Gómez-Aguilar, J.F. Bifurcation analysis of a discrete-time compartmental model for hypertensive or diabetic patients exposed to COVID-19. Eur. Phys. J. Plus 2021, 136, 853. [Google Scholar] [CrossRef]
- Ott, E.; Grebogi, C.; Yorke, J.A. Erratum: “Controlling chaos” [Phys. Rev. Lett. 64, 1196 (1990)]. Phys. Rev. Lett. 1990, 64, 2837. [Google Scholar] [CrossRef]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Luo, X.S.; Chen, G.; Wang, B.H.; Fang, J.Q. Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Solitons Fractals 2003, 18, 775–783. [Google Scholar] [CrossRef]
- Parthasarathy, S. Homoclinic bifurcation sets of the parametrically driven Duffing oscillator. Phys. Rev. A 1992, 46, 2147. [Google Scholar] [CrossRef]
- Din, Q. Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 2018, 56, 904–931. [Google Scholar] [CrossRef]
System Parameters | Dimensional Parameters | Estimated Values |
---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.S.; Samreen, M.; Khan, M.A.; De la Sen, M. A Dynamically Consistent Nonstandard Difference Scheme for a Discrete-Time Immunogenic Tumors Model. Entropy 2022, 24, 949. https://doi.org/10.3390/e24070949
Khan MS, Samreen M, Khan MA, De la Sen M. A Dynamically Consistent Nonstandard Difference Scheme for a Discrete-Time Immunogenic Tumors Model. Entropy. 2022; 24(7):949. https://doi.org/10.3390/e24070949
Chicago/Turabian StyleKhan, Muhammad Salman, Maria Samreen, Muhammad Asif Khan, and Manuel De la Sen. 2022. "A Dynamically Consistent Nonstandard Difference Scheme for a Discrete-Time Immunogenic Tumors Model" Entropy 24, no. 7: 949. https://doi.org/10.3390/e24070949
APA StyleKhan, M. S., Samreen, M., Khan, M. A., & De la Sen, M. (2022). A Dynamically Consistent Nonstandard Difference Scheme for a Discrete-Time Immunogenic Tumors Model. Entropy, 24(7), 949. https://doi.org/10.3390/e24070949