Institution Publication Feature Analysis Based on Time-Series Clustering
Abstract
:1. Introduction
2. Theoretical Basis
2.1. Similarity Measurement
2.2. Affinity Propagation Algorithm
Algorithm 1 Affinity propagation clustering. |
Input: similarity matrix S, where is the median value Output: set of clustering results
|
3. Analysis of Institutions Output Characteristics
3.1. Research Motivation
3.2. Related Definitions
3.2.1. Research Innovation
3.2.2. Subject Innovation
3.3. Characteristic Analysis of Papers Published by Institutions
3.3.1. Numerical Distribution Analysis
Algorithm 2 Numerical distribution analysis. |
Input: Numerical time series of SI Output: Clustered college clusters
|
3.3.2. Trend Analysis
Algorithm 3 Trend analysis. |
Input: Numerical time series of SI Output: College clusters
|
3.3.3. Association Network Analysis
Algorithm 4 Association network analysis. |
Input: Research innovation matrix RI Output: College clusters and preference degree PR
|
4. Empirical Analysis
4.1. Dataset
4.2. Numerical Distribution Analysis
4.3. Trend Analysis
4.4. Association Network Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, S.; Zhao, B.; Dong, Z.; Gao, M.; He, Z. GTAD: Graph and Temporal Neural Network for Multivariate Time Series Anomaly Detection. Entropy 2022, 24, 759. [Google Scholar] [CrossRef]
- Wang, M.; Wang, W.; Zhang, X.; Iu, H.H.C. A New Fault Diagnosis of Rolling Bearing Based on Markov Transition Field and CNN. Entropy 2022, 24, 751. [Google Scholar] [CrossRef] [PubMed]
- Aghabozorgi, S.; Shirkhorshidi, A.S.; Wah, T.Y. Time-series clustering–a decade review. Inf. Syst. 2015, 53, 16–38. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z. Multivariate time series clustering based on complex network. Pattern Recognit. 2021, 115, 107919. [Google Scholar] [CrossRef]
- D’Urso, P.; De Giovanni, L.; Massari, R. Time series clustering by a robust autoregressive metric with application to air pollution. Chemom. Intell. Lab. Syst. 2015, 141, 107–124. [Google Scholar] [CrossRef]
- Peters, M.A.; Besley, T. China’s double first-class university strategy. In The Chinese Dream: Educating the Future; Routledge: London, UK, 2019; pp. 63–69. [Google Scholar] [CrossRef]
- Fraser, K.; Deng, X.; Bruno, F.; Rashid, T.A. Should academic research be relevant and useful to practitioners? The contrasting difference between three applied disciplines. Stud. High. Educ. 2020, 45, 129–144. [Google Scholar] [CrossRef]
- Aldieri, L.; Kotsemir, M.N.; Vinci, C.P. The effects of collaboration on research performance of universities: An analysis by federal district and scientific fields in Russia. J. Knowl. Econ. 2020, 11, 766–787. [Google Scholar] [CrossRef]
- Chatterjee, A.; Ghosh, A.; Chakrabarti, B.K. Universality of citation distributions for academic institutions and journals. PLoS ONE 2016, 11, e0146762. [Google Scholar] [CrossRef] [Green Version]
- Muhuri, P.K.; Shukla, A.K.; Janmaijaya, M.; Basu, A. Applied soft computing: A bibliometric analysis of the publications and citations during (2004–2016). Appl. Soft Comput. 2018, 69, 381–392. [Google Scholar] [CrossRef]
- Matveeva, N.; Sterligov, I.; Yudkevich, M. The effect of Russian University Excellence Initiative on publications and collaboration patterns. J. Inf. 2021, 15, 101110. [Google Scholar] [CrossRef]
- Repiso, R.; Orduna-Malea, E.; Aguaded, I. Scientific journals published by universities in Web of Science: Characteristics and contribution to the university brand. Prof. Inf. 2019, 28, e280405. [Google Scholar] [CrossRef]
- Zuo, Z.; Zhao, K. The more multidisciplinary the better?–The prevalence and interdisciplinarity of research collaborations in multidisciplinary institutions. J. Inf. 2018, 12, 736–756. [Google Scholar] [CrossRef]
- Xia, J. Status and characteristics about published papers of high-level university journals of natural science. Chin. J. Sci. Tech. Period. 2019, 30, 457–461. [Google Scholar] [CrossRef]
- Höppner, F. Improving time series similarity measures by integrating preprocessing steps. Data Min. Knowl. Discov. 2017, 31, 1–28. [Google Scholar] [CrossRef]
- Denkowska, A.; Wanat, S. Dynamic Time Warping Algorithm in Modeling Systemic Risk in the European Insurance Sector. Entropy 2021, 23, 1022. [Google Scholar] [CrossRef]
- Li, H. Time works well: Dynamic time warping based on time weighting for time series data mining. Inf. Sci. 2021, 547, 592–608. [Google Scholar] [CrossRef]
- Paparrizos, J.; Gravano, L. Fast and accurate time-series clustering. ACM Trans. Database Syst. TODS 2017, 42, 1–49. [Google Scholar] [CrossRef]
- Li, H.; Wei, M. Fuzzy clustering based on feature weights for multivariate time series. Knowl.-Based Syst. 2020, 197, 105907. [Google Scholar] [CrossRef]
- De Paepe, D.; Vanden Hautte, S.; Steenwinckel, B.; De Turck, F.; Ongenae, F.; Janssens, O.; Van Hoecke, S. A generalized matrix profile framework with support for contextual series analysis. Eng. Appl. Artif. Intell. 2020, 90, 103487. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.J.; Zhang, S.; Zou, J. Temporary rules of retail product sales time series based on the matrix profile. J. Retail. Consum. Serv. 2021, 60, 102431. [Google Scholar] [CrossRef]
- Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.A.; Sw, A.; Zhe, Y.B.; Lu, P.C. Analyzing potential tourist behavior using PCA and modified affinity propagation clustering based on Baidu index: Taking Beijing city as an example—ScienceDirect. Data Sci. Manag. 2021, 2, 12–19. [Google Scholar] [CrossRef]
- Li, H.; Wu, X. Research on topic discovery and evolution based on time series clustering. J. China Soc. Sci. Tech. Inf. 2019, 38, 1041–1050. [Google Scholar] [CrossRef]
- Quan’e, R. Research progress and disciplinary fusion ofbibliometrics under the backaround of big data. Inf. Stud. Appl. 2019, 42, 48–52. [Google Scholar] [CrossRef]
- Wang, L.; Yao, C.; Liu, Z. A scientific paper evaluation method based on text mining and bibliometrics. Inf. Sci. 2019, 37, 66–70. [Google Scholar] [CrossRef]
- Shengbo, L.; Wang, D.K.B. Research review of scientific paper evaluation. Inf. Stud. Theory Appl. 2016, 39, 126–130. [Google Scholar] [CrossRef]
- Junhong, W. Evaluation of journal impact and U-JIL. Acta Ed. 2011, 23, 552–554. [Google Scholar] [CrossRef]
- Xia, J.; Wright, J.; Adams, C.E. Five large Chinese biomedical bibliographic databases: Accessibility and coverage. Health Inf. Libr. J. 2008, 25, 55–61. [Google Scholar] [CrossRef]
30 Management Journals (J *) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
U1 | 1 | 8 | 10 | 2 | 3 | 15 | 1 | 0 | 7 | 0 | 4 | 2 | 9 | 4 | 1 | 1 | 1 | 0 | 2 | 4 | 4 | 2 | 5 | 0 | 0 | 2 | 1 | 6 | 0 | 2 |
U2 | 2 | 6 | 29 | 6 | 14 | 13 | 2 | 1 | 7 | 0 | 17 | 1 | 10 | 7 | 3 | 5 | 4 | 1 | 2 | 3 | 10 | 12 | 11 | 1 | 1 | 6 | 2 | 7 | 8 | 18 |
U3 | 2 | 8 | 11 | 3 | 6 | 11 | 6 | 0 | 8 | 1 | 11 | 1 | 4 | 21 | 0 | 4 | 0 | 1 | 6 | 26 | 2 | 4 | 5 | 1 | 0 | 17 | 5 | 14 | 0 | 4 |
U4 | 3 | 7 | 1 | 0 | 0 | 0 | 3 | 2 | 0 | 0 | 3 | 3 | 2 | 1 | 0 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 |
U5 | 1 | 7 | 0 | 0 | 2 | 0 | 1 | 1 | 2 | 0 | 4 | 3 | 2 | 4 | 1 | 0 | 1 | 2 | 5 | 6 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 1 |
U6 | 0 | 0 | 0 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 8 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 9 |
U7 | 1 | 1 | 7 | 4 | 5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 3 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 6 | 0 | 1 |
U8 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
U9 | 1 | 4 | 9 | 2 | 2 | 6 | 3 | 0 | 1 | 2 | 13 | 0 | 7 | 2 | 3 | 1 | 2 | 5 | 4 | 4 | 6 | 1 | 18 | 1 | 2 | 5 | 1 | 1 | 0 | 0 |
U10 | 4 | 2 | 1 | 0 | 0 | 0 | 2 | 1 | 2 | 2 | 5 | 1 | 3 | 2 | 2 | 2 | 1 | 4 | 8 | 1 | 0 | 1 | 3 | 6 | 3 | 1 | 3 | 1 | 0 | 0 |
U11 | 3 | 8 | 0 | 0 | 4 | 0 | 3 | 5 | 0 | 8 | 14 | 6 | 2 | 16 | 5 | 0 | 1 | 2 | 15 | 15 | 1 | 0 | 5 | 6 | 4 | 12 | 2 | 2 | 0 | 0 |
U12 | 1 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 5 | 9 | 0 | 2 | 1 | 1 | 8 | 2 | 1 | 4 | 0 | 0 | 0 | 4 | 2 | 3 | 0 |
U13 | 1 | 1 | 3 | 0 | 3 | 0 | 2 | 0 | 1 | 2 | 7 | 1 | 0 | 3 | 0 | 6 | 1 | 1 | 2 | 1 | 0 | 1 | 3 | 0 | 2 | 2 | 3 | 1 | 0 | 0 |
U14 | 1 | 1 | 9 | 3 | 1 | 7 | 4 | 0 | 2 | 2 | 0 | 1 | 1 | 2 | 0 | 3 | 0 | 1 | 0 | 2 | 5 | 1 | 1 | 0 | 0 | 1 | 2 | 0 | 1 | 1 |
U15 | 2 | 7 | 2 | 2 | 4 | 0 | 4 | 0 | 0 | 3 | 1 | 3 | 1 | 16 | 1 | 1 | 0 | 5 | 7 | 6 | 0 | 1 | 2 | 14 | 2 | 8 | 1 | 2 | 0 | 2 |
U16 | 6 | 4 | 7 | 0 | 2 | 0 | 5 | 0 | 0 | 28 | 4 | 4 | 0 | 0 | 0 | 2 | 3 | 1 | 4 | 2 | 0 | 1 | 2 | 28 | 1 | 3 | 2 | 1 | 1 | 1 |
U17 | 0 | 0 | 3 | 2 | 0 | 2 | 3 | 0 | 1 | 3 | 1 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 3 | 0 |
U18 | 7 | 4 | 5 | 1 | 1 | 1 | 3 | 0 | 5 | 6 | 3 | 3 | 2 | 3 | 22 | 1 | 3 | 1 | 3 | 4 | 6 | 2 | 7 | 1 | 2 | 4 | 1 | 4 | 0 | 2 |
U19 | 0 | 4 | 1 | 4 | 2 | 3 | 6 | 7 | 5 | 4 | 1 | 4 | 1 | 3 | 0 | 0 | 1 | 0 | 5 | 2 | 2 | 1 | 2 | 6 | 1 | 1 | 0 | 0 | 1 | 0 |
U20 | 1 | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 4 | 1 | 10 | 1 | 1 | 0 | 0 | 1 | 13 | 2 | 4 | 1 | 0 | 0 | 1 | 2 | 2 | 0 | 5 |
U21 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
U22 | 7 | 6 | 6 | 3 | 2 | 8 | 4 | 0 | 7 | 0 | 2 | 3 | 6 | 3 | 0 | 2 | 2 | 0 | 0 | 2 | 6 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 4 | 0 |
U23 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 0 | 3 | 0 | 4 | 0 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 2 | 3 | 1 | 5 | 0 | 1 | 3 | 2 | 3 | 1 | 1 |
U24 | 0 | 0 | 2 | 0 | 0 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 2 | 1 | 2 | 0 | 1 | 2 | 6 | 0 | 0 |
U25 | 2 | 4 | 0 | 1 | 15 | 8 | 3 | 1 | 5 | 1 | 9 | 4 | 9 | 5 | 17 | 0 | 3 | 2 | 0 | 5 | 9 | 0 | 7 | 0 | 2 | 0 | 1 | 6 | 1 | 2 |
U26 | 2 | 5 | 3 | 2 | 1 | 3 | 6 | 0 | 2 | 3 | 7 | 8 | 4 | 6 | 0 | 1 | 4 | 1 | 6 | 4 | 0 | 2 | 13 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
U27 | 1 | 6 | 0 | 1 | 4 | 0 | 6 | 4 | 1 | 2 | 6 | 2 | 0 | 2 | 0 | 0 | 0 | 1 | 10 | 2 | 1 | 3 | 7 | 1 | 5 | 0 | 3 | 4 | 0 | 0 |
U28 | 9 | 10 | 11 | 0 | 0 | 7 | 7 | 0 | 4 | 1 | 5 | 4 | 4 | 3 | 2 | 2 | 1 | 1 | 0 | 0 | 5 | 0 | 4 | 0 | 1 | 1 | 5 | 2 | 0 | 0 |
U29 | 3 | 7 | 0 | 0 | 3 | 2 | 4 | 1 | 0 | 7 | 7 | 2 | 4 | 12 | 0 | 2 | 0 | 2 | 6 | 10 | 3 | 0 | 8 | 4 | 1 | 6 | 5 | 2 | 0 | 0 |
U30 | 0 | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 3 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 0 | 0 | 1 | 1 | 4 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
U31 | 0 | 4 | 0 | 0 | 2 | 0 | 7 | 1 | 2 | 4 | 2 | 1 | 2 | 4 | 1 | 0 | 1 | 1 | 14 | 3 | 0 | 0 | 7 | 6 | 1 | 0 | 1 | 0 | 2 | 0 |
U32 | 2 | 7 | 1 | 1 | 3 | 2 | 15 | 1 | 3 | 4 | 11 | 8 | 1 | 6 | 0 | 0 | 0 | 3 | 1 | 0 | 1 | 0 | 5 | 0 | 0 | 1 | 3 | 8 | 2 | 1 |
U33 | 1 | 10 | 0 | 4 | 1 | 2 | 8 | 2 | 1 | 7 | 13 | 9 | 3 | 9 | 0 | 0 | 3 | 7 | 18 | 8 | 2 | 1 | 11 | 9 | 3 | 8 | 2 | 3 | 0 | 0 |
U34 | 0 | 4 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 2 | 7 | 0 | 1 | 0 | 0 | 0 | 1 | 6 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 1 | 1 | 0 | 0 |
U35 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 6 | 1 | 0 |
U36 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
U37 | 1 | 7 | 2 | 0 | 1 | 0 | 8 | 4 | 1 | 8 | 5 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 12 | 2 | 0 | 1 | 4 | 5 | 2 | 1 | 1 | 2 | 1 | 0 |
U38 | 1 | 2 | 3 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
U39 | 3 | 4 | 3 | 2 | 7 | 2 | 7 | 0 | 5 | 6 | 6 | 2 | 3 | 3 | 1 | 0 | 1 | 0 | 2 | 6 | 2 | 2 | 5 | 0 | 1 | 0 | 0 | 3 | 1 | 0 |
U40 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
U41 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 6 |
U42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
Grade | Cluster left | Cluster Member Colleges |
---|---|---|
A++ | THU | RUC, XJTU |
A+ | SJTU | FDU, ZJU |
A | ECNU | BIT, BNU, USTC, OUC, SCU, NWPU, LZU, NWAFU |
A- | NJU | PKU, NKU, HUST, SYSU |
B+ | XMU | DUT, WHU, CQU |
B | NEU | BUAA, CAU, TJU, JLU, HIT, TCU, SEU, SDU, CSU, SCUT, UESTC, HNU |
C++ | YNU | MUC, NUDT, ZZU, XJU |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Jin, M.; Ou, F.; Wang, Z.; Wan, X.; Li, H. Institution Publication Feature Analysis Based on Time-Series Clustering. Entropy 2022, 24, 950. https://doi.org/10.3390/e24070950
Lin W, Jin M, Ou F, Wang Z, Wan X, Li H. Institution Publication Feature Analysis Based on Time-Series Clustering. Entropy. 2022; 24(7):950. https://doi.org/10.3390/e24070950
Chicago/Turabian StyleLin, Weibin, Mengwen Jin, Feng Ou, Zhengwei Wang, Xiaoji Wan, and Hailin Li. 2022. "Institution Publication Feature Analysis Based on Time-Series Clustering" Entropy 24, no. 7: 950. https://doi.org/10.3390/e24070950
APA StyleLin, W., Jin, M., Ou, F., Wang, Z., Wan, X., & Li, H. (2022). Institution Publication Feature Analysis Based on Time-Series Clustering. Entropy, 24(7), 950. https://doi.org/10.3390/e24070950