Assigning Degrees of Stochasticity to Blazar Light Curves in the Radio Band Using Complex Networks
Abstract
:1. Introduction
2. Horizontal Visibility Algorithm
2.1. UHVG to Evaluate -Exponent
2.2. DHVG to Estimate D-Value
3. Blazar Light Curves
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HVG | Horizontal Visibility Graph |
UHVG | Undirected Horizontal Visibility Graph |
DHVG | Directed Horizontal Visibility Graph |
KLD | Kullback–Leibler Divergence |
AGN | Active Galactic Nuclei |
OVRO | Owens Valley Radio Observatory |
BL Lac | BL Lacertae |
FSRQ | Flat-Spectrum Radio Quasars |
Appendix A
References
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, L.; Luque, B.; Luque, J.; Nuno, J.C. The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion. EPL Europhys. Lett. 2009, 86, 30001. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Tripailao, B.; Pastén, D.; Moya, P.S. Applying the Horizontal Visibility Graph Method to Study Irreversibility of Electromagnetic Turbulence in Non-Thermal Plasmas. Entropy 2021, 23, 470. [Google Scholar] [CrossRef] [PubMed]
- Acosta, B.; Pastén, D.; Moya, P.S. Reversibility of Turbulent and Non-Collisional Plasmas: Solar Wind. Proc. Int. Astron. Union 2019, 15, 363–366. [Google Scholar] [CrossRef]
- Suyal, V.; Prasad, A.; Singh, H.P. Visibility-graph analysis of the solar wind velocity. Sol. Phys. 2014, 289, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, V.; Garcés, N.E. Analysis of pulsating variable stars using the visibility graph algorithm. PLoS ONE 2021, 16, e0259735. [Google Scholar] [CrossRef]
- Angel, J.; Stockman, H. Optical and infrared polarization of active extragalactic objects. Annu. Rev. Astron. Astrophys. 1980, 18, 321–361. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef] [Green Version]
- Urry, C.M.; Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, S.; Edelson, R.; Warwick, R.; Uttley, P. On characterizing the variability properties of X-ray light curves from active galaxies. Mon. Not. R. Astron. Soc. 2003, 345, 1271–1284. [Google Scholar] [CrossRef]
- Max-Moerbeck, W.; Hovatta, T.; Richards, J.; King, O.; Pearson, T.; Readhead, A.; Reeves, R.; Shepherd, M.; Stevenson, M.; Angelakis, E.; et al. Time correlation between the radio and gamma-ray activity in blazars and the production site of the gamma-ray emission. Mon. Not. R. Astron. Soc. 2014, 445, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Tak, H. Modeling Stochastic Variability in Multiband Time-series Data. Astron. J. 2020, 160, 265. [Google Scholar] [CrossRef]
- Tarnopolski, M.; Żywucka, N.; Marchenko, V.; Pascual-Granado, J. A comprehensive power spectral density analysis of astronomical time series. I. The Fermi-LAT gamma-ray light curves of selected blazars. Astrophys. J. Suppl. Ser. 2020, 250, 1. [Google Scholar] [CrossRef]
- VanderPlas, J.T. Understanding the lomb–scargle periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 16. [Google Scholar] [CrossRef]
- Kirby, J.; Swain, C. Power spectral estimates using two-dimensional Morlet-fan wavelets with emphasis on the long wavelengths: Jackknife errors, bandwidth resolution and orthogonality properties. Geophys. J. Int. 2013, 194, 78–99. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.; Vogeley, M.S.; Richards, G.T.; Yu, W. Stochastic Modeling Handbook for Optical AGN Variability. Publ. Astron. Soc. Pac. 2019, 131, 063001. [Google Scholar] [CrossRef] [Green Version]
- Żywucka, N.; Tarnopolski, M.; Böttcher, M.; Stawarz, Ł.; Marchenko, V. Optical variability modeling of newly identified blazar candidates behind Magellanic Clouds. Astrophys. J. 2020, 888, 107. [Google Scholar] [CrossRef]
- Richards, J.L.; Max-Moerbeck, W.; Pavlidou, V.; King, O.G.; Pearson, T.J.; Readhead, A.C.; Reeves, R.; Shepherd, M.C.; Stevenson, M.A.; Weintraub, L.C.; et al. Blazars in the FERMI Era: The OVRO 40 m telescope monitoring program. Astrophys. J. Suppl. Ser. 2011, 194, 29. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuno, J.C. From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 2008, 105, 4972–4975. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, L.; Nunez, A.; Roldán, E.; Parrondo, J.M.; Luque, B. Time series irreversibility: A visibility graph approach. Eur. Phys. J. B 2012, 85, 217. [Google Scholar] [CrossRef] [Green Version]
- Cover, T.M.; Thomas, J.A. Elements of information theory second edition solutions to problems. Internet Access 2006, 19–20. [Google Scholar]
- Parzen, E. Stochastic Processes; Classics in Applied Mathematics 24; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1999. [Google Scholar]
- Luque, B.; Lacasa, L.; Ballesteros, F.; Luque, J. Horizontal visibility graphs: Exact results for random time series. Phys. Rev. E 2009, 80, 046103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luque, B.; Lacasa, L.; Ballesteros, F.J.; Robledo, A. Feigenbaum graphs: A complex network perspective of chaos. PLoS ONE 2011, 6, e22411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacasa, L.; Toral, R. Description of stochastic and chaotic series using visibility graphs. Phys. Rev. E 2010, 82, 036120. [Google Scholar] [CrossRef] [Green Version]
- Ravetti, M.G.; Carpi, L.C.; Gonçalves, B.A.; Frery, A.C.; Rosso, O.A. Distinguishing noise from chaos: Objective versus subjective criteria using horizontal visibility graph. PLoS ONE 2014, 9, e108004. [Google Scholar] [CrossRef]
- Zhang, R.; Zou, Y.; Zhou, J.; Gao, Z.K.; Guan, S. Visibility graph analysis for re-sampled time series from auto-regressive stochastic processes. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 396–403. [Google Scholar] [CrossRef]
- Roldán, É.; Parrondo, J.M. Entropy production and Kullback-Leibler divergence between stationary trajectories of discrete systems. Phys. Rev. E 2012, 85, 031129. [Google Scholar] [CrossRef] [Green Version]
- Hovatta, T.; Lindfors, E. Relativistic Jets of Blazars. New Astron. Rev. 2019, 87, 101541. [Google Scholar] [CrossRef]
- Turner, T.; George, I.; Nandra, K.; Turcan, D. On X-ray variability in Seyfert galaxies. Astrophys. J. 1999, 524, 667. [Google Scholar] [CrossRef] [Green Version]
- Edelson, R.; Krolik, J.; Pike, G. Broad-band properties of the CfA Seyfert galaxies. III-Ultraviolet variability. Astrophys. J. 1990, 359, 86–97. [Google Scholar] [CrossRef]
- Rodriguez-Pascual, P.; Alloin, D.; Clavel, J.; Crenshaw, D.M.; Horne, K.; Kriss, G.A.; Krolik, J.H.; Malkan, M.A.; Netzer, H.; O’Brien, P.T.; et al. Steps toward determination of the size and structure of the broad-Line region in active galactic nuclei. IX. Ultraviolet observations of fairall 9. Astrophys. J. Suppl. Ser. 1997, 110, 9. [Google Scholar] [CrossRef] [Green Version]
- Massaro, E.; Maselli, A.; Leto, C.; Marchegiani, P.; Perri, M.; Giommi, P.; Piranomonte, S. Multifrequency Catalogue of Blazars, 5th ed.; ARACNE: Rome, Italy, 2014. [Google Scholar]
- Hovatta, T.; Lindfors, E.; Kiehlmann, S.; Max-Moerbeck, W.; Hodges, M.; Liodakis, I.; Lähteemäki, A.; Pearson, T.; Readhead, A.; Reeves, R.; et al. Association of IceCube neutrinos with radio sources observed at Owens Valley and Metsähovi Radio Observatories. Astron. Astrophys. 2021, 650, A83. [Google Scholar] [CrossRef]
- Clauset, A. Info I709: Advanced Seminars II in Informatics: Complex Networks and Systems. SIAM Rev. 2009, 51, 661. [Google Scholar] [CrossRef] [Green Version]
Exponent | |||||||||
---|---|---|---|---|---|---|---|---|---|
Class | Peak | Mean | Median | std | min | 25% | 50% | 75% | max |
FSRQ | 0.446 | 0.449 | 0.447 | 0.052 | 0.306 | 0.413 | 0.447 | 0.482 | 0.598 |
BL Lac | 0.392 | 0.419 | 0.409 | 0.053 | 0.319 | 0.381 | 0.409 | 0.451 | 0.600 |
D | Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Class | Peak | Mean | Median | std | min | 25% | 50% | 75% | max |
FSRQ | 0.026 | 0.031 | 0.027 | 0.019 | 0.002 | 0.018 | 0.027 | 0.041 | 0.170 |
BL Lac | 0.030 | 0.034 | 0.029 | 0.025 | 0.003 | 0.019 | 0.029 | 0.043 | 0.253 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Tripailao, B.; Max-Moerbeck, W.; Pastén, D.; Moya, P.S. Assigning Degrees of Stochasticity to Blazar Light Curves in the Radio Band Using Complex Networks. Entropy 2022, 24, 1063. https://doi.org/10.3390/e24081063
Acosta-Tripailao B, Max-Moerbeck W, Pastén D, Moya PS. Assigning Degrees of Stochasticity to Blazar Light Curves in the Radio Band Using Complex Networks. Entropy. 2022; 24(8):1063. https://doi.org/10.3390/e24081063
Chicago/Turabian StyleAcosta-Tripailao, Belén, Walter Max-Moerbeck, Denisse Pastén, and Pablo S. Moya. 2022. "Assigning Degrees of Stochasticity to Blazar Light Curves in the Radio Band Using Complex Networks" Entropy 24, no. 8: 1063. https://doi.org/10.3390/e24081063
APA StyleAcosta-Tripailao, B., Max-Moerbeck, W., Pastén, D., & Moya, P. S. (2022). Assigning Degrees of Stochasticity to Blazar Light Curves in the Radio Band Using Complex Networks. Entropy, 24(8), 1063. https://doi.org/10.3390/e24081063