Separability Criteria Based on the Weyl Operators
Abstract
:1. Introduction
2. The Representation of Quantum States in Terms of Weyl Operators
3. Application of Weyl Operators in Separability Criteria
4. Application of Weyl Operators in Quantum Teleportation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bennett, C.H.; Wiesner, S.J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 1992, 69, 2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895. [Google Scholar] [CrossRef] [Green Version]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Gao, T.; Yan, F.L.; Li, Y.C. Optimal controlled teleportation. Europhys. Lett. 2008, 84, 50001. [Google Scholar] [CrossRef] [Green Version]
- Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 1996, 77, 1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terhal, B. Bell inequalities and the separability criterion. Phys. Lett. A 2000, 271, 319. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, H.F.; Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 2003, 68, 032103. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Wu, L.A. A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 2002, 3, 193. [Google Scholar] [CrossRef]
- Gu¨hne, O.; Hyllus, P.; Gittsovich, O.; Eisert, J. Covariance matrices and the separability problem. Phys. Rev. Lett. 2007, 99, 130504. [Google Scholar] [CrossRef] [Green Version]
- Sarbicki, G.; Scala, G.; Chruściński, D. Family of multipartite separability criteria based on a correlation tensor. Phys. Rev. A 2020, 101, 012341. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, W.; Markiewicz, M.; Paterek, T.; Żukowski, M. Correlation-tensor criteria for genuine multiqubit entanglement. Phys. Rev. A 2014, 84, 062305. [Google Scholar] [CrossRef] [Green Version]
- Cotfas, N.; Dragoman, D. Properties of finite Gaussians and the discrete-continuous transition. J. Phys. A Math. Theor. 2012, 45, 425305. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, B.; Hiesmayr, B.C.; Narnhofer, H. State space for two qutrits has a phase space structure in its core. Phys. Rev. A 2006, 74, 032327. [Google Scholar] [CrossRef] [Green Version]
- Asadian, A.; Budroni, C.; Steinhoff, F.E.S.; Rabl, P.; Gühne, O. Contextuality in Phase Space. Phys. Rev. Lett. 2015, 114, 250403. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Cui, M.; Zhang, T.; Fei, S.M. Separability criteria based on Heisenberg-Weyl representation of density matrices. Chin. Phys. B 2018, 27, 030302. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Yang, Y.; Jing, N.; Wang, Z.X.; Fei, S.M. Detection of multipartite entanglement based on Heisenberg-Weyl representation of density matrices. Quantum Inf. Process. 2020, 19, 1. [Google Scholar] [CrossRef]
- Narnhofer, H. Entanglement reflected in Wigner functions. J. Phys. A Math. Gen. 2006, 39, 7051. [Google Scholar] [CrossRef]
- Baumgartner, B.; Hiesmayr, B.C.; Narnhofer, H. A special simplex in the state space for entangled qudits. J. Phys. A Math. Theor. 2007, 40, 7919. [Google Scholar] [CrossRef]
- Asadian, A.; Erker, P.; Huber, M.; Klöckl, C. Heisenberg-Weyl Observables: Bloch vectors in phase space. Phys. Rev. A 2016, 94, 010301. [Google Scholar] [CrossRef] [Green Version]
- Bertlmann, R.A.; Krammer, P. Bloch vectors for qudits. J. Phys. A Math. Theor. 2008, 41, 235303. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Y.Q.; Fei, S.M.; Wang, Z.X.; Jing, N. Detection of genuine multipartite entanglement based on principal basis matrix representations. Laser Phys. Lett. 2022, 19, 035205. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Y.Q.; Jing, N.; Wang, Z.X.; Fei, S.M. Detection of genuine tripartite entanglement based on Bloch representation of density matrices. Quantum Inf. Process. 2022, 21, 116. [Google Scholar] [CrossRef]
- Liu, M.; Bai, C.; Ge, M.L.; Jing, N. Generalized Bell states and principal realization of the Yangian Y(slN). J. Math. Phys. 2013, 54, 021701. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.Q.; Juan, Y.; Ming, L.; Fei, S.M. Improved separability criteria based on bloch representation of density matrices. Sci. Rep. 2016, 6, 28850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A 1996, 223, 1. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; DiVncenzo, D.P.; Mor, T.; Shor, P.W.; Smolin, J.A.; Terhal, B.M. Unextendible product bases and bound entanglement. Phys. Rev. Lett. 1999, 82, 5385. [Google Scholar] [CrossRef] [Green Version]
- Weis, S.; Knauf, A.; Ay, N.; Zhao, M.J. Maximizing the divergence from a Hierarchical model of quantum states. Open Syst. Inf. Dyn. 2015, 22, 1550006. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; DiVincenzo, D.P.; Smolin, J.A.; Wootters, W.K. Mixed state entanglement and quantum error correction. Phys. Rev. A 1996, 54, 3824. [Google Scholar] [CrossRef] [Green Version]
- Horodecki, M.; Horodecki, P.; Horodecki, R. General teleportation channel, singlet fraction and quasi-distillation. Phys. Rev. A 1999, 60, 1888. [Google Scholar] [CrossRef] [Green Version]
- Albeverio, S.; Fei, S.M.; Yang, W.L. Optimal teleportation based on Bell measurements. Phys. Rev. A 2002, 66, 012301. [Google Scholar] [CrossRef] [Green Version]
- Grondalski, J.; Etlinger, D.M.; James, D.F.V. The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A 2002, 300, 573. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, N.; Adhikari, S.; Majumdar, A.S.; Chatterjee, J. Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 2011, 107, 270501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.J.; Fei, S.M.; Li-Jost, X. Entanglement witness operator for quantum teleportation. Phys. Rev. A 2012, 85, 054301. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Jing, N.; Zhang, T. An upper bound of fully entangled fraction of mixed states. Commun. Theor. Phys. 2016, 65, 701. [Google Scholar]
- Vicente, J.I. Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 2007, 7, 624. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zhang, T.; Zhao, M.-J.; Jing, N. Separability Criteria Based on the Weyl Operators. Entropy 2022, 24, 1064. https://doi.org/10.3390/e24081064
Huang X, Zhang T, Zhao M-J, Jing N. Separability Criteria Based on the Weyl Operators. Entropy. 2022; 24(8):1064. https://doi.org/10.3390/e24081064
Chicago/Turabian StyleHuang, Xiaofen, Tinggui Zhang, Ming-Jing Zhao, and Naihuan Jing. 2022. "Separability Criteria Based on the Weyl Operators" Entropy 24, no. 8: 1064. https://doi.org/10.3390/e24081064
APA StyleHuang, X., Zhang, T., Zhao, M. -J., & Jing, N. (2022). Separability Criteria Based on the Weyl Operators. Entropy, 24(8), 1064. https://doi.org/10.3390/e24081064